ON THE THREE DIMENSIONAL COMPETITION SYSTEMS ARISING FROM ARABIDOPSIS CLOCK

Sze-Bi Hsu ${ }^{\boxed{\boxtimes}}{ }^{*}$ and Chao-Ping Hsu ${ }^{\boxtimes 234}$
${ }^{1}$ Department of Mathematics, National Tsing-Hua University, Hsinchu, Taiwan
${ }^{2}$ Institute of Chemistry, Academia Sinica, Taipei, Taiwan
${ }^{3}$ Physics Devision, National Center for Theoretical Science, Taiwan
${ }^{4}$ Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan

(Communicated by Xiao-Qiang Zhao)

Abstract

In this paper, we study mathematical models of three dimensional competitive systems originated from the represillator and their variants. There are two parts for the mathematical results. In part I, we first prove the uniqueness of the positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Then we present necessary and sufficient conditions for their local asymptotic stability and instability. In part II, we present sufficient conditions for the global asymptotic stability of $\left(x^{*}, y^{*}, z^{*}\right)$ provided $\left(x^{*}, y^{*}, z^{*}\right)$ is locally asymptotic stable.

1. Introduction. Periodic oscillation is an important form of dynamics. The fundamental and simple harmonic oscillator serves as a classic example of linear oscillators. However, the stability of linear oscillator can be easily changed with a nonlinear perturbation. The well-known Hopf bifurcation as the generation of periodic orbits has been a core element in nonlinear dynamics for oscillations [7]. Periodic oscillation is a vital element for functional dynamics in biology. With a network of biochemical regulation, the levels of components in a cell or an organism can oscillate periodically, which allows the cell to "count" time and to entrain the cell differentiation process with developmental stages [24, 19]. With these innate clocks, cells predict and prepare for the time-dependent events by signaling the cell, where gene expression $[30,31]$ or other biochemical events such as cell cycles[2, 9, 22], circadian clocks [25, 26, 29] and somite formation [16, 21], among others are taking place in the right time orders.

In viewing cells as tiny biochemical reactors, the uncertainty and heterogeneity in the biochemical regulations has been an important aspect of study, a phenomenon that is often called "noise"[5]. While noise can be taken as an advantageous addition to the system[4], in many cases, it is necessary to cope with such uncertainties to maintain many functions. In coping with such noises, a faithful and robust oscillator

[^0]is often required. It has been reported that oscillators gain robustness through the coupling with dual negative feedback [18, 28], interlinking a negative feedback with a positive feedback[3, 8, 14], or incoherent feed-forward loops [14].

An artificially synthesized oscillator in E. coli cells, the represillator[6], has drawn much attention. It was shown that tiny E. coli cells with this very simple 3 -gene network can produce oscillation in reporter fluorescence protein, but such oscillations are not robust, as a cell can cease to oscillate, and the phase of oscillation was not kept well. While an improved version of represillator is reported years afterwards[23], various mechanisms are also known to keep oscillations robust[1]. For example, a positive feedback provides the system offers a tunability in the oscillation frequency but maintains the amplitude [32]. Positive feedback loops facilitate hysteric two-state building, while feed-ford structure allows a faster switch in circadian clocks. [14] It was also shown that such a represillator circuit cannot oscillate properly if the genes are leaky in their transcriptional regulation, and a translational control, such as protein degradation or activation/deactivation, is important to keep the oscillation[15]. The represillator as a classic and almost the simplest biological oscillator has been a very suitable object for theoretical and computational studies.

In this paper we shall study the three-dimensional competition systems deriving from represillator. Especially we analyze the mathematical models of M1-M5 in [15] in which the authors investigate the roles of each transcriptional and posttranslational regulations and their combination of these two regulations. Their results provide insights into the plausible importance in coupling transcription and post-translation control in the clock system.

Fortunately these three-dimensional systems are competition systems of special types. M.Hirsch [10] in 1980 proved the Poincaré-Bendixson Theorem for three dimensional competition systems. We apply Poincaré-Bendixson Theorem directly to show that the solution either tends to a unique locally stable equilibrium or tends to a limit cycle. Further more we apply the second compound method introduced by Muldoney [20] to prove that for the models $M 1-M 5$ under some conditions every periodic orbit, whenever it exists, is orbitally asymptotically stable. Thus we can show that if the unique equilibrium is locally asymptotically stable, then it is globally asymptotically stable. However, if the limit cycle exists then it is orbitally asymptotically stable. But we are unable to prove that the limit cycle is unique.

In Section 2 we state the Models $M 1-M 5$ in [15]. The main results for the Models M1-M5 are presented in Section 3. Section 4 is the section of numerical test results and discussion. We deferred the proofs of Theorem 3.1 to Theorem 3.5 to the Section 5.
2. The Models. Let $h_{i}(w)=\frac{\kappa_{i}^{n_{i}}}{\kappa_{i}^{n_{i}}+w^{n_{i}}}$ represent Hill function of repressive process and $g_{i}(w)=\frac{w^{n_{i}}}{\kappa_{i}^{n_{i}}+w^{n_{i}}}$ represents Hill function of activating process. In the following we present mathematical models $M 1-M 5$.

Model $M 1$: transcriptional control based repressilator

$$
\begin{align*}
& \frac{d x}{d t}=\beta_{1} h_{2}(y)-r_{1} x \\
& \frac{d y}{d t}=\beta_{2} h_{3}(z)-r_{2} y \tag{2.1}\\
& \frac{d z}{d t}=\beta_{3} h_{1}(x)-r_{3} z
\end{align*}
$$

where x, y, z represents the concentration of genes and $r_{i}, \beta_{i}, i=1,2,3$ are degradation rate and gene expression rate respectively.

Figure 2.1

Model M2 : Post-translational control based repressilator

$$
\begin{align*}
& \frac{d x}{d t}=\beta_{1}-\left(r_{1}+r_{d 1} g_{2}(y)\right) x \\
& \frac{d y}{d t}=\beta_{2}-\left(r_{2}+r_{d 2} g_{3}(z)\right) y \tag{2.2}\\
& \frac{d z}{d t}=\beta_{3}-\left(r_{3}+r_{d 3} g_{1}(x)\right) z
\end{align*}
$$

where $r_{d_{i}}, i=1,2,3$, is the controlled degradation rate.

Figure 2.2

Model $M 3$: Transcriptional control based repressilator with additional positive feed back

$$
\begin{align*}
& \frac{d x}{d t}=\beta_{1} h_{2}(y)+\beta_{p} g_{1}(x)-r_{1} x \\
& \frac{d y}{d t}=\beta_{2} h_{3}(z)-r_{2} y \tag{2.3}\\
& \frac{d z}{d t}=\beta_{3} h_{1}(x)-r_{3} z
\end{align*}
$$

where β_{p} is the positive feedback rate.

Figure 2.3

Model $M 4$: Post-translational control based repressilator with additional positive feedback loop

$$
\begin{align*}
& \frac{d x}{d t}=\beta_{1}+\beta_{p} g_{1}(x)-\left(r_{1}+r_{d 1} g_{2}(y)\right) x \\
& \frac{d y}{d t}=\beta_{2}-\left(r_{2}+r_{d 2} g_{3}(z)\right) y \tag{2.4}\\
& \frac{d z}{d t}=\beta_{3}-\left(r_{3}+r_{d 3} g_{1}(x)\right) z
\end{align*}
$$

Figure 2.4

Model $M 5$: Coupled transcriptional and post-translational control-based oscillator

$$
\begin{align*}
& \frac{d x}{d t}=\beta_{1} h_{2}(y)-\left(r_{1}+r_{d 1} g_{2}(y)\right) x \\
& \frac{d y}{d t}=\beta_{2} h_{3}(z)-\left(r_{2}+r_{d 2} g_{3}(z)\right) y \tag{2.5}\\
& \frac{d z}{d t}=\beta_{3} h_{1}(x)-\left(r_{3}+r_{d 3} g_{1}(x)\right) z
\end{align*}
$$

Figure 2.5
3. Statements of Main Results. Before we state main results we state the Poincaré-Bendixson Theorem for three-dimensional competitive systems.
Definition 3.1 : Consider the autonomous system of ordinary differential equations

$$
\begin{equation*}
x^{\prime}=f(x), \quad x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \tag{E}
\end{equation*}
$$

where $f=\left(f_{i}, \cdots, f_{n}\right)$ is continuously differentiable on an open set $D \subseteq \mathbb{R}^{n}$. The system (E) is called a competitive system on D if D is p-convex and

$$
\frac{\partial f_{i}}{\partial x_{j}} \leq 0, \quad i \neq j, \quad x \in D
$$

We recall that D is p-convex if $t x+(1-t) y \in D$ for all $t \in[0,1]$ whenever $x, y \in D$ and $x \leq y$. In the following we state the Poincaré-Bendixson Theorem for three-dimensional competitive systems.
Theorem A ([27], p.41) : A compact limit set of a competitive system in \mathbb{R}^{3} that contains no equilibrium points is a periodic orbit.

Next we state the main results for Model M1- Model M5.
Theorem 3.1 : For Model M1, the system (2.1) satisfies:
(i) There exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Let

$$
\begin{align*}
& A_{1}=r_{1}+r_{2}+r_{3} \\
& A_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \tag{3.1}\\
& A_{3}=r_{1} r_{2} r_{3}+\left(-\beta_{1} \beta_{2} \beta_{3} h_{1}^{\prime}\left(x^{*}\right) h_{2}^{\prime}\left(y^{*}\right) h_{3}^{\prime}\left(z^{*}\right)\right)
\end{align*}
$$

(a) $\left(x^{*}, y^{*}, z^{*}\right)$ is locally asymptotically stable if $A_{1} A_{2}>A_{3}$.
(b) $\left(x^{*}, y^{*}, z^{*}\right)$ is unstable with one dimensional stable manifold $W^{s}\left(x^{*}, y^{*}, z^{*}\right)$ if $A_{1} A_{2}<A_{3}$.
(ii) Let

$$
\begin{equation*}
\frac{n_{1}\left(\frac{\beta_{1}}{r_{1}}\right)^{n_{1}}}{\kappa_{1}^{n_{1}}+\left(\frac{\beta_{1}}{r_{1}}\right)^{n_{1}}} \cdot \frac{n_{2}\left(\frac{\beta_{2}}{r_{2}}\right)^{n_{2}}}{\kappa_{2}^{n_{2}}+\left(\frac{\beta_{2}}{r_{2}}\right)^{n_{2}}} \cdot \frac{n_{3}\left(\frac{\beta_{3}}{r_{3}}\right)^{n_{3}}}{\kappa_{3}^{n_{3}}+\left(\frac{\beta_{3}}{r_{3}}\right)^{n_{3}}} \leq 8 \tag{H1}
\end{equation*}
$$

Under hypothesis (H1), the following conclusions (C1) and (C2) hold.
(C1) If $\left(x^{*}, y^{*}, z^{*}\right)$ is locally asymptotically stable then $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable in $\mathbb{R}+{ }^{3}$.
(C2) If $\left(x^{*}, y^{*}, z^{*}\right)$ is unstable, for the trajectory with $(x(0), y(0), z(0)) \notin$ $W^{s}\left(x^{*}, y^{*}, z^{*}\right)$ tends to a limit cycle Γ.

Remark 3.1 :

(i) If $n_{1} n_{2} n_{3} \leq 8$, then (H1) holds.
(ii) If $\frac{\beta_{i}}{r_{i}} \leq 1$ for $i=1,2,3$, then for n_{i} large $\lim _{n_{i} \rightarrow \infty}\left(n_{i}\left(\frac{\beta_{i}}{r_{i}}\right)^{n_{i}}\right)=0$. Hence (H1) holds.
Theorem 3.2 : For Model $M 2$, the system (2.2) satisfies:
(i) There exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Let

$$
\begin{align*}
A_{1} & =\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right)+\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right)+\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right) \\
A_{2} & =\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right)\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right)+\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right)\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right) \\
& +\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right)\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right) \tag{3.2}\\
A_{3} & =\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right)\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right)\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right) \\
& +r_{d 1} g_{2}^{\prime}\left(y^{*}\right) x^{*} r_{d 2} g_{3}^{\prime}\left(z^{*}\right) y^{*} r_{d 3} g_{1}^{\prime}\left(x^{*}\right) z^{*} .
\end{align*}
$$

Then (a) and (b) of Theorem 3.1(i) holds.
(ii) If $n_{1}=n_{2}=n_{3}=1$ and

$$
\begin{equation*}
r_{d 1} r_{d 2} r_{d 3} \frac{\kappa_{1} \kappa_{2} \kappa_{3}}{\beta_{1} \beta_{2} \beta_{3}} \leq 8 \tag{H2}
\end{equation*}
$$

or $n_{i}>1, i=1,2,3$ and

$$
\begin{equation*}
\frac{r_{d 1} r_{d 2} r_{d 3}}{\beta_{1} \beta_{2} \beta_{3}} \prod_{i=1}^{3} \frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}} \leq 8 \tag{H3}
\end{equation*}
$$

Then under hypothesis (H2) or (H3), the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.
Remark 3.2 : If $n_{1}=n_{2}=n_{3}=2$, then (H3) implies

$$
\frac{r_{d 1} r_{d 2} r_{d 3}}{\beta_{1} \beta_{2} \beta_{3}} \frac{3 \sqrt{3}}{8} \kappa_{1} \frac{3 \sqrt{3}}{8} \kappa_{2} \frac{3 \sqrt{3}}{8} \kappa_{3} \leq 8
$$

Theorem 3.3: Assume

$$
\begin{equation*}
r_{1} x>\beta_{p} g_{1}(x), \text { and } r_{1}>\beta_{p} g_{1}^{\prime}(x), \text { for all } x>0 \tag{M}
\end{equation*}
$$

For Model M3, the system (2.3) satisfies:
(i) There exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Let

$$
\begin{align*}
& A_{1}=r_{1}-\beta_{p} g_{1}^{\prime}\left(x^{*}\right)+r_{2}+r_{3}>0 \\
& A_{2}=\left(r_{1}-\beta_{p} g_{1}^{\prime}\left(x^{*}\right)\right) r_{2}+\left(r_{1}-\beta_{p} g_{1}^{\prime}\left(x^{*}\right)\right) r_{3}+r_{2} r_{3}>0 \tag{3.3}\\
& A_{3}=\left(r_{1}-\beta_{p} g_{1}^{\prime}\left(x^{*}\right)\right) r_{2} r_{3}+\left(-\beta_{1} \beta_{2} \beta_{3} h_{1}^{\prime}\left(x^{*}\right) h_{2}^{\prime}\left(y^{*}\right) h_{3}^{\prime}\left(z^{*}\right)\right)>0
\end{align*}
$$

Then (a) and (b) of Theorem 3.1(i) hold.
(ii) Let (H1) hold. Then the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.

Remark 3.3 : ($\widehat{\mathrm{M}} 3$) says the positive feedback term $\beta_{p} g_{1}(x)$ in the system (2.3) is small. From [32] Model M3 is more robust than Model $M 1$ in the sense of producing oscillations.

Theorem 3.4 : Assume

$$
\begin{align*}
& x g_{1}^{\prime}(x)-g_{1}(x)<\frac{\beta_{1}}{\beta_{p}}, x>0 \text { for } \beta_{p}>0 \text { sufficiently small, } \\
& \beta_{p}<\frac{1}{\beta_{1}} \max _{1}<x<\widetilde{x}_{2} \tag{M}\\
& \left(x g_{1}^{\prime}(x)-g_{1}(x)\right) \text { where } \\
& x g_{1}^{\prime}(x)-g_{1}(x)<0 \text { for } 0<x<\widetilde{x}_{1} \text { or } x>\widetilde{x}_{2} \\
& x g_{1}^{\prime}(x)-g_{1}(x)>0 \text { for } \widetilde{x}_{1}<x<\widetilde{x}_{2}
\end{align*}
$$

For Model M4, the system (2.4) satisfies:
(i) There exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Let

$$
\begin{aligned}
& \widetilde{r}_{1}=r_{1}+r_{d 1} g_{2}\left(y^{*}\right)-\beta_{p} g_{1}^{\prime}\left(x^{*}\right) \\
& \widetilde{r}_{2}=r_{2}+r_{d 2} g_{3}\left(z^{*}\right) \\
& \widetilde{r}_{3}=r_{3}+r_{d 3} g_{1}\left(x^{*}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& A_{1}=\widetilde{r}_{1}+\widetilde{r}_{2}+\widetilde{r}_{3}>0 \\
& A_{2}=\widetilde{r}_{1} \widetilde{r}_{2}+\widetilde{r}_{3} \widetilde{r}_{3}+\widetilde{r}_{1} \widetilde{r}_{3}>0 \tag{3.4}\\
& A_{3}=\widetilde{r}_{1} \widetilde{r}_{2} \widetilde{r}_{3}+r_{d 1} r_{d 2} r_{d 3} g_{1}^{\prime}\left(x^{*}\right) g_{2}^{\prime}\left(y^{*}\right) g_{3}^{\prime}\left(z^{*}\right) x^{*} y^{*} z^{*}>0
\end{align*}
$$

Then (a) and (b) of Theorem 3.1(i) holds.
(ii) If

$$
\begin{equation*}
\prod_{i=1}^{3} r_{d i} \frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}} \leq 8 \beta_{1} \beta_{2}\left(\beta_{1}+\beta_{p} g_{1}\left(x_{l o w}\right)\right) \tag{H4}
\end{equation*}
$$

where $x_{l o w}$ is the root of

$$
\beta_{1}+\beta_{p} g_{1}(X)=\left(r_{1}+r_{d 1} g_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right) X
$$

and $x_{\text {low }}$ is a lower bound of $X(t)$. Then the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.
Remark 3.4 : ($\widehat{\mathrm{M}} 4$) says the positive feedback term in the system (2.4) is small. From [32] the Model M4 is more robust that the Model M2 in producing oscillations.
Theorem 3.5 : For Model M5, the system (2.5) satisfies:
(i) There exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. Let

$$
\begin{aligned}
& \widetilde{r}_{1}=r_{1}+r_{d 1} g_{2}\left(y^{*}\right) \\
& \widetilde{r}_{2}=r_{2}+r_{d 2} g_{3}\left(z^{*}\right) \\
& \widetilde{r}_{3}=r_{3}+r_{d 3} g_{1}\left(x^{*}\right),
\end{aligned}
$$

and

$$
\begin{align*}
A_{1} & =\widetilde{r}_{1}+\widetilde{r}_{3}+\widetilde{r}_{3} \\
A_{2} & =\widetilde{r}_{1} \widetilde{r}_{2}+\widetilde{r}_{2} \widetilde{r}_{3}+\widetilde{r}_{1} \widetilde{r_{3}} \\
A_{3} & =\widetilde{r}_{1} \widetilde{r}_{2} \widetilde{r}_{3} \\
& +\left(r_{d 1} g_{2}^{\prime}\left(y^{*}\right) x^{*}-\beta_{1} h_{2}^{\prime}\left(y^{*}\right)\right)\left(r_{d 2} g_{3}^{\prime}\left(z^{*}\right) y^{*}-\beta_{2} h_{3}^{\prime}\left(z^{*}\right)\right)\left(r_{d 3} g_{1}^{\prime}\left(x^{*}\right) z^{*}-\beta_{3} h_{1}^{\prime}\left(x^{*}\right)\right) . \tag{3.5}
\end{align*}
$$

Then (a) and (b) of Theorem 3.1(i) hold.
(ii) Let

$$
\begin{align*}
8 \beta_{1} \beta_{2} \beta_{3} \geq & \left(n_{2} g_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right)\left(\beta_{1}+r_{d 1} \frac{\beta_{1}}{r_{1}}\right) \\
& \cdot\left(n_{1} g_{1}\left(\frac{\beta_{1}}{r_{1}}\right)\right)\left(\beta_{3}+r_{d 3} \frac{\beta_{3}}{r_{3}}\right) \tag{H5}\\
& \cdot\left(n_{3} g_{3}\left(\frac{\beta_{3}}{r_{3}}\right)\right)\left(\beta_{2}+r_{d 2} \frac{\beta_{2}}{r_{2}}\right) .
\end{align*}
$$

If (H5) holds, then the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.

Remark 3.5 : If

$$
\begin{equation*}
\left(1+\frac{r_{d 1}}{r_{1}}\right)\left(1+\frac{r_{d 3}}{r_{3}}\right)\left(1+\frac{r_{d 2}}{r_{2}}\right) n_{1} n_{2} n_{3} \leq 8 \tag{H6}
\end{equation*}
$$

then (H5) holds.
4. Numerical Test Results and Discussion. With the mathematical analysis presented above, we numerically test whether oscillation can be produced following the derived criteria. Following [15], we have extended the same parameter range as listed in Table 1 for both $M 1$ (and M5), finding parameter sets that satisfy criteria (H1) (and (H5)) and test for oscillations. Among 100,000 parameter sets each for $M 1$ and $M 5$ satisfying (H1) and (H5), we could not identify any parameter set that can oscillate continuously. Unfortunately, the theorem presented in the present work is not sufficient to identify oscillators.

It will be a challenge to prove uniqueness of limit cycles in the 3-dimensional competitive systems. So far there is no such results in the literature. However in [33], [11] the authors prove multiple limit cycles in some three species Lotka-Volterra competitive models. We shall investigate uniqueness of limit cycles for the model M1-M5 in our future project.
(1) For Model M1:

The parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=35, n_{1}=2, n_{2}=2, n_{3}=2, \kappa_{1}=1$, $\kappa_{2}=2, \kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=2.5$ satisfy (H1) and the trajectory with initial condition $x(0)=1, y(0)=1, z(0)=1$ goes to equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ as $t \rightarrow \infty$. Hence $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable (See Fig. 4.1 (a)).

Table 1. The scanned parameter range

$M 1$		
Parameters	Range	Search scale
r_{i} (degradation rates)	$0.001-1000$	Logarithm
β_{i} (gene expression rates)	$0.001-1000$	Logarithm
κ (Threshold in all Hill function)	$0.001-1000$	Logarithm
n (in the Hill function)	$1-8$	Linear
$M 5$		
r_{i} (basal degradation rates)	$0.001-1000$	Logarithm
$r_{d i}$ (controlled degradation rates)	$0.001-1000$	Logarithm
β_{i} (gene expression rates)	$0.001-1000$	Logarithm
κ (Threshold in all Hill function)	$0.001-1000$	Logarithm
n (in the Hill function)	$1-8$	Linear

In Fig. 4.1 (b), the trajectory approaches a limit cycle, however the parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=35, n_{1}=3, n_{2}=3, n_{3}=3, \kappa_{1}=1, \kappa_{2}=2$, $\kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=2.5$ does not satisfy (H1)

Fig 4.1 (a)

Fig 4.1 (b)

1. For Model M2:

[] The parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=2, n_{2}=2, n_{3}=2$, $\kappa_{1}=2, \kappa_{2}=2, \kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=5, r_{d 2}=10, r_{d 3}=15$ satisfy (H3) and the trajectory with initial condition $x(0)=1, y(0)=1$, $z(0)=1$ goes to equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ as $t \rightarrow \infty$. Hence $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable (See Fig. 4.2 (a)).

In Fig. 4.2 (b), the trajectory approaches a limit cycle, however the parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=5, n_{2}=5, n_{3}=5, \kappa_{1}=2, \kappa_{2}=2$, $\kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=50, r_{d 2}=100, r_{d 3}=150$ does not satisfy (H3)
2. For Model M3:

The parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=2, n_{2}=2, n_{3}=2$, $\kappa_{1}=1, \kappa_{2}=2, \kappa_{3}=2.5, r_{1}=5, r_{2}=10, r_{3}=12.5, \beta_{p}=5$ satisfy (H1) and the trajectory with initial condition $x(0)=1, y(0)=1, z(0)=1$ goes to equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ as $t \rightarrow \infty$. Hence $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable (See Fig. 4.3 (a)).

In Fig. 4.3 (b), the trajectory approaches a limit cycle, however the parameters $\beta_{1}=50, \beta_{2}=100, \beta_{3}=120, n_{1}=5, n_{2}=5, n_{3}=5, \kappa_{1}=1, \kappa_{2}=2$, $\kappa_{3}=2.5, r_{1}=5, r_{2}=10, r_{3}=12.5, \beta_{p}=5$ does not satisfy (H1)

Fig 4.3 (a)

Fig 4.3 (b)

3. For Model M4:

The parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=2, n_{2}=2, n_{3}=2, \kappa_{1}=2$, $\kappa_{2}=2, \kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=5, r_{d 2}=10, r_{d 3}=15, \beta_{p}=0.5$ satisfy (H4) and the trajectory with initial condition $x(0)=1, y(0)=1$, $z(0)=1$ goes to equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ as $t \rightarrow \infty$. Hence $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable (See Fig. 4.4 (a)).

In Fig. 4.4 (b), the trajectory approaches a limit cycle, however the parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=5, n_{2}=5, n_{3}=5, \kappa_{1}=1, \kappa_{2}=2$, $\kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=50, r_{d 2}=100, r_{d 3}=150, \beta_{p}=0.5$ does not satisfy (H4)
4. For Model M5:

The parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=2, n_{2}=2, n_{3}=2, \kappa_{1}=2$, $\kappa_{2}=2, \kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=0.01, r_{d 2}=0.02, r_{d 3}=0.03$ satisfy (H5) and the trajectory with initial condition $x(0)=1, y(0)=1$, $z(0)=1$ goes to equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ as $t \rightarrow \infty$. Hence $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable (See Fig. 4.5 (a)).

In Fig. 4.5 (b), the trajectory approaches a limit cycle, however the parameters $\beta_{1}=10, \beta_{2}=20, \beta_{3}=25, n_{1}=5, n_{2}=5, n_{3}=5, \kappa_{1}=1, \kappa_{2}=2$, $\kappa_{3}=2.5, r_{1}=1, r_{2}=2, r_{3}=3, r_{d 1}=50, r_{d 2}=100, r_{d 3}=150$ does not satisfy (H5)

5. Proofs. For the three-dimensional competitive systems in Models $M 1-M 5$, the Poincaré-Bendixson Theorem holds (See Theorem A in Section 3). We shall apply the second-compound method [20] to show that under some conditions stated in Theorem 3.1 - Theorem 3.5 every periodic orbit, if it exists, is orbitally asymptotically stable. Since the positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ is unique for each model of M1-M5, then it follows that
(i) By Theorem 5.2 (See below), the equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable when $\left(x^{*}, y^{*}, z^{*}\right)$ is locally asymptotically stable.
(ii) When $\left(x^{*}, y^{*}, z^{*}\right)$ is unstable, then $\left(x^{*}, y^{*}, z^{*}\right)$ has one-dimensional stable manifold $W^{s}\left(x^{*}, y^{*}, z^{*}\right)$. For the trajectory with

$$
(x(0), y(0), z(0)) \notin W^{s}\left(x^{*}, y^{*}, z^{*}\right),
$$

the orbit tends to a limit cycle Γ.
Let's recall that for a 3×3 matrix is

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

the second compound matrix of A is

$$
A^{[2]}=\left[\begin{array}{ccc}
a_{11}+a_{22} & a_{23} & -a_{13} \\
a_{32} & a_{11}+a_{33} & a_{12} \\
-a_{31} & a_{21} & a_{22}+a_{33}
\end{array}\right]
$$

Let $(X(t), Y(t), Z(t))$ be a ω-periodic solution of three dimensional competitive system

$$
\begin{equation*}
x^{\prime}=F(x), \quad x \in \mathbb{R}^{3} . \tag{5.1}
\end{equation*}
$$

Let

$$
A=D F(X, Y, Z), \text { Jacobian matrix at }(X, Y, Z)
$$

and

$$
A^{[2]}=D F^{[2]}(X, Y, Z)
$$

Consider the ω-periodic linear equation

$$
\begin{equation*}
\frac{d U}{d t}=D F^{[2]}(X, Y, Z) U \tag{5.2}
\end{equation*}
$$

From [27, Theorem 4.2] (See also [17], Theorem 3.1):
Theorem 5.1([20]) : A sufficient condition for a periodic orbit $\gamma=\{p(t): 0 \leq$ $t \leq \omega\}$ of (5.1) to be asymptotically orbitally stable with asymptotic phase is that the linear periodic system (5.2) is asymptotically stable.

We shall introduce a function

$$
W(X, Y, Z ; U)=\sum_{i=1}^{3} p_{i}(X, Y, Z)\left|U_{i}\right|
$$

where $p_{i}(X, Y, Z)$ for $i=1,2,3$ are auxiliary positive smooth functions, which will be determined latter. Let

$$
W(t)=W(X(t), Y(t), Z(t) ; U(t))
$$

We shall prove $W(t) \rightarrow 0$ as $t \rightarrow \infty$, i.e. the periodic linear system (5.2) is asymptotically stable. Then the periodic orbit

$$
\{(X(t), Y(t), Z(t)): 0 \leq t \leq \omega\}
$$

is asymptotically orbitally stable.
For the sake of completeness, we include the proof of global asymptotically stability of the unique positive equilibrium E_{c} in [13], Prop. 3.6. Let $\Omega \subseteq \operatorname{Int}\left(\mathbb{R}_{+}^{3}\right)$ be a bounded positively invariant region for the three-dimensional competitive system (5.1).

Theorem 5.2([13]) : Assume every periodic orbit of the system (5.1), if it exists, is orbitally asymptotically stable. Let E_{c} be a locally asymptotically stable equilibrium of (5.1) in Ω. Then E_{c} is globally asymptotically stable in Ω.

Proof. Let \mathcal{A} be the basin of attraction of the locally asymptotically stable equilibrium E_{c}. Then \mathcal{A} is a nonempty relatively open subset of Ω. Denote $\partial_{\Omega} \mathcal{A}$ the boundary of \mathcal{A} relative to Ω. Clearly $\partial_{\Omega} \mathcal{A}$ is invariant. Let $u \in \partial_{\Omega} \mathcal{A}$. Them the omega-limit set $\omega(u) \subseteq \partial_{\Omega} \mathcal{A}$ and $E_{c} \notin \omega(u)$. Since E_{c} is the unique positive equilibrium in Ω. By Poincaré-Bendixson Theorem $\omega(u)$ is a periodic orbit of (5.1), $\omega(u) \subseteq \partial_{\Omega} \mathcal{A}$. From the assumption $\omega(u)$ is orbitally asymptotically stable. One can choose a point $p \in \mathcal{A}$ sufficiently close to $\omega(u)$. On one hand, p is attracted to E_{c}. On the other hand, p will be asymptotic to the orbitally stable periodic orbit $\omega(u)$, a contradiction. Thus we prove that E_{c} is globally asymptotically stable in Ω.

Proof of Theorem 3.1 :

(i) The positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ satisfies

$$
x=\frac{1}{r_{1}} \beta_{1} h_{2}(y), y=\frac{1}{r_{2}} \beta_{2} h_{3}(z), z=\frac{1}{r_{3}} \beta_{3} h_{1}(x) .
$$

Then

$$
\begin{aligned}
& z=\frac{1}{r_{3}} \beta_{3} h_{1}\left(\frac{1}{r_{1}} \beta_{1} h_{2}\left(\frac{1}{r_{2}} \beta_{2} h_{3}(z)\right)\right):=H(z), \\
& H(0)=\frac{\beta_{3}}{r_{3}}\left(\frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}} h_{3}(0)\right)\right) \\
& \quad=\frac{\beta_{3}}{r_{3}}\left(\frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right)>0 .
\end{aligned}
$$

Obviously
$H^{\prime}(z)=\frac{1}{r_{3}} \beta_{3} h_{1}^{\prime}\left(\frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}} h_{3}(z)\right)\right) \cdot \frac{\beta_{1}}{r_{1}} h_{1}^{\prime}\left(\frac{\beta_{2}}{r_{2}} h_{3}(z)\right) \cdot \frac{\beta_{2}}{r_{2}} h_{3}^{\prime}(z)<0$.
Thus $z=H(z)$ has a unique positive solution z^{*}. Then $y^{*}=\frac{\beta_{2}}{r_{2}} h_{3}\left(z^{*}\right)$, $x^{*}=\frac{\beta_{1}}{r_{1}} h_{2}\left(y^{*}\right)$. Hence the positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ is unique.

The Jacobian evaluated at $\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
J\left(x^{*}, y^{*}, z^{*}\right)=\left[\begin{array}{ccc}
-r_{1} & \beta_{1} h_{2}^{\prime}\left(y^{*}\right) & 0 \\
0 & -r_{2} & \beta_{2} h_{3}^{\prime}\left(z^{*}\right) \\
\beta_{3} h_{1}^{\prime}\left(x^{*}\right) & 0 & -r_{3}
\end{array}\right]
$$

with eigenvalues λ_{1}, λ_{2}, and λ_{3}. The characteristic polynomial of $J\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
\begin{aligned}
f(\lambda)= & \lambda^{3}+\lambda^{2}\left(r_{1}+r_{2}+r_{3}\right)+\lambda\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)+ \\
& \left(r_{1} r_{2} r_{3}+\left(-\beta_{1} \beta_{2} \beta_{3} h_{1}^{\prime}\left(x^{*}\right) h_{2}^{\prime}\left(y^{*}\right) h_{3}^{\prime}\left(z^{*}\right)\right)\right) .
\end{aligned}
$$

From Routh-Hurwitz criteria [12], page $58,\left(x^{*}, y^{*}, z^{*}\right)$ is locally asymptotically stable if $A_{1} A_{2}>A_{3}$ where

$$
\begin{aligned}
& A_{1}=r_{1}+r_{2}+r_{3}, A_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \\
& A_{3}=r_{1} r_{2} r_{3}+\left(-\beta_{1} \beta_{2} \beta_{3} h_{1}^{\prime}\left(x^{*}\right) h_{2}^{\prime}\left(y^{*}\right) h_{3}^{\prime}\left(z^{*}\right)\right)
\end{aligned}
$$

If $A_{1} A_{2}<A_{3}$, then $\operatorname{det} J=-f(0)=\lambda_{1} \lambda_{2} \lambda_{3}<0$. From [27] (p.51, Prop. 6.1) below, then (a) and (b) hold.

Prop. 6.1 : Suppose $p=\left(x^{*}, y^{*}, z^{*}\right)$ is hyperbolic and unstable. Then the stable manifold of $p, W^{s}(p)$ is one dimensional and the ω-limit set $\omega(q)$ is a nontrivial periodic orbit in D for every $q \in D \backslash W^{s}(p)$.
(ii) Let $(X(t), Y(t), Z(t))$ be a ω-periodic solution of (2.1). We denote F the vector field of (2.1). Then the Jacobian matrix $D F(X, Y, Z)$ is

$$
\left(\begin{array}{ccc}
-r_{1} & \beta_{1} h_{2}^{\prime}(Y) & 0 \tag{5.3}\\
0 & -r_{2} & \beta_{2} h_{3}^{\prime}(Z) \\
\beta_{3} h_{1}^{\prime}(X) & 0 & -r_{3}
\end{array}\right)
$$

Then the second compound matrix $D F^{[2]}(X, Y, Z)$ is

$$
D F^{[2]}(X, Y, Z)=\left[\begin{array}{ccc}
-r_{1}-r_{2} & \beta_{2} h_{3}^{\prime}(Z) & 0 \tag{5.4}\\
0 & -r_{1}-r_{3} & \beta_{1} h_{2}^{\prime}(Y) \\
-\beta_{3} h_{1}^{\prime}(X) & 0 & -r_{2}-r_{3}
\end{array}\right]
$$

Consider ω-periodic linear equation

$$
\begin{equation*}
\frac{d U}{d t}=D F^{[2]}(X, Y, Z) U, U=\left(U_{1}, U_{2}, U_{3}\right) \tag{5.5}
\end{equation*}
$$

Now, we introduce the function

$$
W(X, Y, Z ; U)=\sum_{i=1}^{3} p_{i}(X, Y, Z)\left|U_{i}\right|
$$

where $p_{i}(X, Y, Z), i=1,2,3$ will be auxiliary positive smooth functions, which will be determined later. Let $W(t)=W(X(t), Y(t), Z(t) ; U(t))$. Then the right hand side derivative $D_{+} W(t)$ of $W(t)$ with respect to t exists and has the form

$$
\begin{equation*}
D_{+} W(t)=\sum_{i=1}^{3} p_{i}^{\prime}(t)\left|U_{i}(t)\right|+p_{i}(t) D_{+}\left(\left|U_{i}(t)\right|\right) \tag{5.6}
\end{equation*}
$$

where $p_{i}(t)=p_{i}(X(t), Y(t), Z(t))$ and $p_{i}^{\prime}(t)$ is the derivative of $p_{i}(t)$. From (5.5), we have

$$
\begin{aligned}
\frac{d U_{1}}{d t} & =\left(-r_{1}-r_{2}\right) U_{1}(t)+\beta_{2} h_{3}^{\prime}(Z(t)) U_{2}(t) \\
\frac{d U_{2}}{d t} & =\left(-r_{1}-r_{3}\right) U_{2}(t)+\beta_{1} h_{2}^{\prime}(Y(t)) U_{3}(t) \\
\frac{d U_{3}}{d t} & =\left(-\beta_{3} h_{1}^{\prime}(X(t))\right) U_{1}(t)+\left(-r_{2}-r_{3}\right) U_{3}(t)
\end{aligned}
$$

Since the diagonals of the matrix $D F^{[2]}(X, Y, Z)$ are negative, it follows that

$$
\begin{align*}
& D_{+}\left(\left|U_{1}(t)\right|\right) \leq-\left(r_{1}+r_{2}\right)\left|U_{1}(t)\right|+\left(-\beta_{2} h_{3}^{\prime}(Z(t))\right)\left|U_{2}(t)\right| \\
& D_{+}\left(\left|U_{2}(t)\right|\right) \leq-\left(r_{1}+r_{3}\right)\left|U_{2}(t)\right|+\left(-\beta_{1} h_{2}^{\prime}(Y(t))\right)\left|U_{3}(t)\right| \tag{5.7}\\
& D_{+}\left(\left|U_{3}(t)\right|\right) \leq-\left(r_{2}+r_{3}\right)\left|U_{3}(t)\right|+\left(-\beta_{3} h_{1}^{\prime}(X(t))\right)\left|U_{1}(t)\right|
\end{align*}
$$

From (5.6) and (5.7), a direct calculation yields

$$
\begin{align*}
D_{+} W(t) & \leq\left(\frac{p_{1}^{\prime}(t)}{p_{1}(t)}-\left(r_{1}+r_{2}\right)+\frac{p_{3}(t)}{p_{1}(t)}\left(-\beta_{3} h_{1}^{\prime}(X(t))\right)\right) p_{1}(t)\left|U_{1}(t)\right| \\
& +\left(\frac{p_{2}^{\prime}(t)}{p_{2}(t)}+\frac{p_{1}(t)}{p_{2}(t)}\left(-\beta_{2} h_{3}^{\prime}(Z(t))\right)-\left(r_{1}+r_{3}\right)\right) p_{2}(t)\left|U_{2}(t)\right| \tag{5.8}\\
& +\left(\frac{p_{3}^{\prime}(t)}{p_{3}(t)}+\frac{p_{2}(t)}{p_{3}(t)}\left(-\beta_{1} h_{2}^{\prime}(Y(t))\right)-\left(r_{2}+r_{3}\right)\right) p_{3}(t)\left|U_{3}(t)\right|
\end{align*}
$$

From (5.1), the periodic solution $(X(t), Y(t), Z(t))$ satisfies

$$
\begin{align*}
\frac{d X}{d t} & =\beta_{1} h_{2}(Y)-r_{1} X \\
\frac{d Y}{d t} & =\beta_{2} h_{3}(Z)-r_{2} Y \tag{5.9}\\
\frac{d Z}{d t} & =\beta_{3} h_{1}(X)-r_{3} Z
\end{align*}
$$

From (5.9), it follows that

$$
\begin{align*}
& \int_{0}^{\omega}\left(\frac{\beta_{1} h_{2}(Y(t))}{X(t)}-r_{1}\right) d t=0 \\
& \int_{0}^{\omega}\left(\frac{\beta_{2} h_{3}(Z(t))}{Y(t)}-r_{2}\right) d t=0 \tag{5.10}\\
& \int_{0}^{\omega}\left(\frac{\beta_{3} h_{1}(X(t))}{Z(t)}-r_{3}\right) d t=0
\end{align*}
$$

Now, by choosing $p_{3}=\frac{1}{p_{1}}:=p>0$ where $p=p(X, Y, Z)$ is a positive function of the stable variable (X, Y, Z). We note that along the ω-periodic solution $(X(t), Y(t), Z(t)), t \in[0, \omega]$, one has

$$
\int_{0}^{\omega} \frac{p^{\prime}}{p} d t=\int_{0}^{\omega} \frac{p_{2}^{\prime}}{p_{2}} d t=0
$$

Let

$$
\begin{aligned}
g_{1}(t) & =\frac{p^{\prime}(t)}{p(t)}-\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}\right)+\frac{p_{3}}{p_{1}}\left(-\beta_{3} h_{1}^{\prime}(X)\right) \\
g_{2}(t) & =\frac{p_{2}^{\prime}(t)}{p_{2}(t)}+\frac{p}{p_{2}}\left(-\beta_{3} h_{3}^{\prime}(Z)\right)-\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{3} h_{1}(X)}{Z}\right) \\
g_{3}(t) & =\frac{p_{3}^{\prime}(t)}{p_{3}(t)}+\frac{p_{2}}{p_{3}}\left(-\beta_{1} h_{2}^{\prime}(Y)\right)-\left(\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}\right) .
\end{aligned}
$$

Choose

$$
p=\sqrt{\frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}}{-\beta_{3} h_{3}^{\prime}(X)}} .
$$

Then $\int_{0}^{\omega} g_{1}(t) d t=0$. Consequently, from (5.8)

$$
\begin{equation*}
D_{+} W \leq \max \left(g_{1}(t), g_{2}(t), g_{3}(t)\right) W(t) \tag{5.11}
\end{equation*}
$$

Choose $p_{2}(t)$ such that

$$
\begin{aligned}
& \frac{1 / p}{p_{2}} \leq \frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}}{-\beta_{3} h_{3}^{\prime}(Z)} \\
& \frac{p_{2}}{p} \leq \frac{\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}}{-\beta_{1} h_{2}^{\prime}(Y)}
\end{aligned}
$$

We need

$$
\begin{equation*}
\frac{\left(-\beta_{3} h_{3}^{\prime}(Z)\right)\left(-\beta_{1} h_{2}^{\prime}(Y)\right)}{\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}\right)\left(\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}\right)} \leq p^{2}=\frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}}{-\beta_{3} h_{1}^{\prime}(X)} \tag{5.12}
\end{equation*}
$$

Then we choose p_{2} such that

$$
A:=\frac{1}{p} \cdot \frac{-\beta_{3} h_{3}^{\prime}(Z)}{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}} \leq p_{2} \leq \frac{\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}}{-\beta_{1} h_{2}^{\prime}(Y)} \cdot p:=B
$$

Say $p_{2}=\frac{1}{2}(A+B)$. To show that (5.12) holds, it suffices to show
$\left(-\beta_{1} h_{2}^{\prime}(Y)\right)\left(-\beta_{2} h_{3}^{\prime}(Z)\right)\left(-\beta_{3} h_{1}^{\prime}(X)\right)$
$\leq\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}\right)\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{3} h_{1}(X)}{Z}\right)\left(\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}\right)$.
Use the inequality, for positive numbers a and b

$$
\sqrt{a b} \leq \frac{a+b}{2} .
$$

It suffices to show

$$
\begin{align*}
&\left(-\beta_{1} h_{2}^{\prime}(Y)\right)\left(-\beta_{2} h_{3}^{\prime}(Z)\right)\left(-\beta_{3} h_{1}^{\prime}(X)\right) \\
& \leq 8 \sqrt{\frac{\beta_{1} h_{2}(Y) \beta_{2} h_{3}(Z)}{X Y}} \sqrt{\frac{\beta_{1} h_{2}(Y) \beta_{3} h_{1}(X)}{X Z}} \sqrt{\frac{\beta_{2} h_{3}(Z) \beta_{3} h_{1}(X)}{Y Z}} \\
&=8 \frac{\beta_{1} \beta_{2} \beta_{3} h_{1}(X) h_{2}(Y) h_{3}(Z)}{X Y Z} \\
& \Longleftrightarrow \quad \beta_{1} \frac{\kappa_{2}^{n_{2}} n_{2} Y^{n_{2}-1}}{\left(\kappa_{2}^{n_{2}}+Y^{\left.n_{2}\right)^{2}}\right.} \beta_{3} \frac{\kappa_{1}^{n_{1}} n_{1} X^{n_{1}-1}}{\left(\kappa_{1}^{1_{2}}+X^{n_{1}}\right)^{2}} \beta_{2} \frac{\kappa_{3}^{n_{3}} n_{3} Z^{n_{3}-1}}{\left(\kappa_{3}^{n_{3}}+Z^{n_{3}}\right)^{2}} \\
& \quad \leq 8 \frac{\beta_{1} \beta_{2} \beta_{3} \frac{\kappa_{1}^{n_{1}}}{\kappa_{1}^{n_{1}}+X^{n_{1}}} \frac{\kappa_{2}^{n_{2}}}{\kappa_{2}^{n_{2}}+Y^{n_{2}}} \frac{\kappa_{3}^{n_{3}}+Z^{n_{3}}}{X Y Z}}{} \\
& \Longleftrightarrow \quad \frac{n_{1} X^{n_{1}}}{\kappa_{1}^{n_{1}}+X^{n_{1}}} \cdot \frac{n_{2} Y^{n_{2}}}{\kappa_{2}^{n_{2}}+Y^{n_{2}}} \cdot \frac{n_{3} Z^{n_{3}}}{\kappa_{3}^{n_{3}}+Z^{n_{3}}} \leq 8
\end{align*}
$$

Under (5.13) we have

$$
\begin{equation*}
\int_{0}^{\omega} g_{i}(t) d t<0, i=2,3, \int_{0}^{\omega} g_{1}(t) d t=0 . \tag{5.14}
\end{equation*}
$$

From the first equation in (2.1), we obtain an upper bound for a periodic solution $X(t)$:

$$
\frac{d X}{d t} \leq \beta_{1} h_{2}(0)-r_{1} X=\beta_{1}-r_{1} X, X(t) \leq \frac{\beta_{1}}{r_{1}} .
$$

Similarly for periodic solutions $Y(t)$ and $Z(t)$, we have

$$
\begin{equation*}
Y(t) \leq \frac{\beta_{2}}{r_{2}} \text { and } Z(t) \leq \frac{\beta_{3}}{r_{3}} . \tag{5.15}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{n_{1}\left(\frac{\beta_{1}}{r_{1}}\right)^{n_{1}}}{\kappa_{1}^{n_{1}}+\left(\frac{\beta_{1}}{r_{1}}\right)^{n_{1}}} \cdot \frac{n_{2}\left(\frac{\beta_{2}}{r_{2}}\right)^{n_{2}}}{\kappa_{2}^{n_{2}}+\left(\frac{\beta_{2}}{r_{2}}\right)^{n_{2}}} \cdot \frac{n_{3}\left(\frac{\beta_{3}}{r_{3}}\right)^{n_{3}}}{\kappa_{3}^{n_{3}}+\left(\frac{\beta_{3}}{r_{3}}\right)^{n_{3}}} \leq 8 . \tag{H1}
\end{equation*}
$$

Then (H1) implies (5.13). Under assumption (H1), from Theorem 5.1 and (5.11), (5.14), every periodic orbit $(X(t), Y(t), Z(t))$ is orbitally asymptotically stable. From the system (2.1), we obtain differential inequalities,

$$
\frac{d x}{d t} \leq \beta_{1}-r_{1} x, \frac{d y}{d t} \leq \beta_{2}-r_{2} y, \frac{d z}{d t} \leq \beta_{3}-r_{3} z .
$$

Thus if $A_{1} A_{2}>A_{3}$, applying Theorem 5.2 with

$$
\begin{equation*}
\Omega=\left\{(x, y, z): 0<x<\frac{\beta_{1}}{r_{1}}, 0<y<\frac{\beta_{2}}{r 2}, 0<z<\frac{\beta_{3}}{r_{3}}\right\} \tag{5.16}
\end{equation*}
$$

yields that $\left(x^{*}, y^{*}, z^{*}\right)$ is globally asymptotically stable; if $A_{1} A_{2}<A_{3}$, from Poincaré-Bendixson Theorem then $\left(x^{*}, y^{*}, z^{*}\right)$ is unstable with one dimensional stable manifold $W^{s}\left(x^{*}, y^{*}, z^{*}\right)$ such that the trajectory with

$$
(x(0), y(0), z(0)) \notin W^{s}\left(x^{*}, y^{*}, z^{*}\right)
$$

approaches a limit cycle Γ.

Remark 5.2 : Upper bounds and lower bounds of a periodic solutions

 $X(t), Y(t), Z(t)$.We may improve the upper bound in (5.15) by introducing a lower bound of $X(t), Y(t)$, and $Z(t)$. Since

$$
X(t) \leq \frac{\beta_{1}}{r_{1}}:=X_{\max }^{(1)}, Y(t) \leq \frac{\beta_{2}}{r_{2}}:=Y_{\max }^{(1)}, Z(t) \leq \frac{\beta_{3}}{r_{3}}:=Z_{\max }^{(1)}
$$

From the differential inequalities,

$$
\begin{aligned}
\frac{d X}{d t} & \geq \beta_{1} h_{2}\left(\frac{\beta_{2}}{r_{2}}\right)-r_{1} X \\
\frac{d Y}{d t} & \geq \beta_{2} h_{3}\left(\frac{\beta_{3}}{r_{3}}\right)-r_{2} Y \\
\frac{d Z}{d t} & \geq \beta_{3} h_{1}\left(\frac{\beta_{1}}{r_{1}}\right)-r_{3} Z
\end{aligned}
$$

We obtain lower bounds,

$$
\begin{align*}
& X(t) \geq \frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}}\right):=X_{\min }^{(1)} \\
& Y(t) \geq \frac{\beta_{2}}{r_{2}} h_{3}\left(\frac{\beta_{3}}{r_{3}}\right):=Y_{\min }^{(1)} \tag{5.17}\\
& Z(t) \geq \frac{\beta_{3}}{r_{3}} h_{1}\left(\frac{\beta_{1}}{r_{1}}\right):=Z_{\min }^{(1)}
\end{align*}
$$

Using the lower bounds in (5.17), we improve the upper bounds in (5.14). From the differential inequalities,

$$
\begin{aligned}
\frac{d X}{d t} & =\beta_{1} h_{2}(Y)-r_{1} X \leq \beta_{1} h_{2}\left(\frac{\beta_{2}}{r_{2}} h_{3}\left(\frac{\beta_{3}}{r_{3}}\right)\right)-r_{1} X \\
\frac{d Y}{d t} & =\beta_{2} h_{3}(Z)-r_{2} Y \leq \beta_{2} h_{3}\left(\frac{\beta_{3}}{r_{3}} h_{1}\left(\frac{\beta_{1}}{r_{1}}\right)\right)-r_{2} Y \\
\frac{d Z}{d t} & =\beta_{3} h_{1}(X)-r_{3} Z \leq \beta_{3} h_{1}\left(\frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right)-r_{3} Z
\end{aligned}
$$

We obtain upper bounds,

$$
\begin{aligned}
& X(t) \leq \frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}} h_{3}\left(\frac{\beta_{3}}{r_{3}}\right)\right):=X_{\max }^{(2)} \\
& Y(t) \leq \frac{\beta_{2}}{r_{2}} h_{3}\left(\frac{\beta_{3}}{r_{3}} h_{1}\left(\frac{\beta_{1}}{r_{1}}\right)\right):=Y_{\max }^{(2)} \\
& Z(t) \leq \frac{\beta_{3}}{r_{3}} h_{1}\left(\frac{\beta_{1}}{r_{1}} h_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right):=Z_{\max }^{(2)}
\end{aligned}
$$

From the following algorithm below, we obtain a sequence of upper bounds and lower bounds,

$$
\begin{aligned}
& X_{\max }^{(i+1)}=\frac{\beta_{1}}{r_{1}} h_{2}\left(Y_{\min }^{i}\right), \\
& Y_{\max }^{(i+1)}=\frac{\beta_{2}}{r_{2}} h_{3}\left(Z_{\min }^{i}\right), \quad i=1,2, \ldots \\
& Z_{\max }^{(i+1)}=\frac{\beta_{3}}{r_{3}} h_{1}\left(X_{\min }^{i}\right) . \\
& X_{\min }^{(i)}=\frac{\beta_{1}}{r_{1}} h_{2}\left(Y_{\max }^{(i)}\right), \\
& Y_{\min }^{(i)}=\frac{\beta_{2}}{r_{2}} h_{3}\left(Z_{\max }^{(i)}\right), \quad i=1,2, \ldots \\
& Z_{\min }^{(i)}=\frac{\beta_{3}}{r_{3}} h_{1}\left(X_{\max }^{(i)}\right) .
\end{aligned}
$$

$\left\{X_{\max }^{(i)}\right\}_{i=1}^{\infty}$ is a decreasing sequence and $\left\{X_{\min }^{(i)}\right\}_{i=1}^{\infty}$ is an increasing sequence. Similarly, $\left\{Y_{\max }^{(i)}\right\}_{i=1}^{\infty},\left\{Z_{\max }^{(i)}\right\}_{i=1}^{\infty}$ are decreasing sequences and $\left\{Y_{\min }^{(i)}\right\}_{i=1}^{\infty},\left\{Z_{\text {min }}^{(i)}\right\}_{i=1}^{\infty}$ are increasing sequences. We can improve the condition (H1) by

$$
\begin{equation*}
\frac{n_{1}\left(X_{\max }^{(i)}\right)^{n_{1}}}{\kappa_{1}^{n_{1}}+\left(X_{\max }^{(i)}\right)^{n_{1}}} \frac{n_{2}\left(Y_{\max }^{(i)}\right)^{n_{2}}}{\kappa_{2}^{n_{2}}+\left(Y_{\max }^{(i)}\right)^{n_{2}}} \frac{n_{3}\left(Z_{\max }^{(i)}\right)^{n_{3}}}{\kappa_{3}^{n_{3}}+\left(Z_{\max }^{(i)}\right)^{n_{3}}} \leq 8, i=1,2, \ldots \tag{H1}
\end{equation*}
$$

Proof of Theorem 3.2 :

(i) For the Model $M 2$, we first prove there exist a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ of the system (2.2). The positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ satisfies

$$
\begin{aligned}
& x=\frac{\beta_{1}}{r_{1}+r_{d 1} g_{2}(y)}=G_{2}(y) \\
& y=\frac{\beta_{2}}{r_{2}+r_{d 2} g_{3}(z)}=G_{3}(z) \\
& z=\frac{\beta_{3}}{r_{3}+r_{d 3} g_{1}(x)}=G_{1}(x) .
\end{aligned}
$$

The functions $G_{1}(x), G_{2}(y), G_{3}(z)$ are strictly decreasing. Then

$$
z=G_{1}\left(G_{2}\left(G_{3}(z)\right)\right)=H(z)
$$

$H(0)>0, H(z)$ is decreasing in z. Thus $z=H(z)$ has a unique positive solution z^{*}. Then $y^{*}=G_{3}\left(z^{*}\right), x^{*}=G_{2}\left(y^{*}\right)$. The Jacobian of the system
(2.2) evaluated at $\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
J\left(x^{*}, y^{*}, z^{*}\right)=\left[\begin{array}{ccc}
-\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right) & -r_{d 1} g_{2}^{\prime}\left(y^{*}\right) x^{*} & 0 \\
0 & -\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right) & -r_{d 2} g_{3}^{\prime}\left(z^{*}\right) y^{*} \\
r_{d 3} g_{1}^{\prime}\left(x^{*}\right) z^{*} & 0 & -\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right)
\end{array}\right]
$$

The characteristic polynomial of $J\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
f(\lambda)=\lambda^{3}+A_{1} \lambda^{2}+A_{2} \lambda+A_{3}
$$

where A_{1}, A_{2}, A_{3} are listed in (3.2). Hence if, by Routh-Hurwitz criterion, $A_{1} A_{2}>A_{3}$, then (a) holds. If $A_{1} A_{2}<A_{3}$, then (b) holds.
(ii) Let F be the vector field of (2.2) and $(X(t), Y(t), Z(t))$ be a ω-periodic solution of the system (2.2). Then
$D F(X, Y, Z)=\left[\begin{array}{ccc}-\left(r_{1}+r_{d 1} g_{2}(Y)\right) & -r_{d 1} g_{2}^{\prime}(Y) Z & 0 \\ 0 & -\left(r_{2}+r_{d 2} g_{3}(Z)\right) & -r_{d 2} g_{3}^{\prime}(Z) Y \\ r_{d 3} g_{1}^{\prime}(X) Z & 0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right)\end{array}\right]$
and

$$
D F^{[2]}(X, Y, Z)=
$$

$$
\left[\begin{array}{ccc}
-\left(r_{1}+r_{d 1} g_{2}(Y)\right) & -r_{d 2} g_{3}^{\prime}(Z) Y & 0 \\
-\left(r_{2}+r_{d 2} g_{3}(Z)\right) & -\left(r_{1}+r_{d 1} g_{2}(Y)\right) & -r_{d 1} g_{2}^{\prime}(Y) X \\
0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right) & -\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
& 0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{array}\right]
$$

Consider ω-periodic linear equation

$$
\begin{equation*}
\frac{d U}{d t}=D F^{[2]}(X, Y, Z) U, U=\left(U_{1}, U_{2}, U_{3}\right) \tag{5.18}
\end{equation*}
$$

As in the proof of Theorem 3.1, we introduce the function

$$
W(X, Y, Z ; U)=\sum_{i=1}^{3} p_{i}(X, Y, Z)\left|U_{i}\right|
$$

and $W(t)=(X(t), Y(t), Z(t) ; U(t))$,

$$
D_{+} W(t)=\sum_{i=1}^{3} p_{i}^{\prime}(t)\left|U_{i}(t)\right|+p_{i}(t) D_{+}\left(\left|U_{i}(t)\right|\right)
$$

Let

$$
\begin{aligned}
& D 1=\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
& D 2=\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\left(r_{3}+r_{d 3} g_{1}(X)\right) \\
& D 3=\left(r_{2}+r_{d 2} g_{3}(Y)\right)+\left(r_{3}+r_{d 3} g_{1}(X)\right) .
\end{aligned}
$$

Since from (5.18)

$$
\begin{aligned}
\frac{d U_{1}}{d t} & =(-D 1) U_{1}+\left(-r_{d 2} g_{3}^{\prime}(Z) Y\right) U_{2} \\
\frac{d U_{2}}{d t} & =(-D 2) U_{2}+\left(-r_{d 1} g_{2}^{\prime}(Y) X\right) U_{3} \\
\frac{d U_{3}}{d t} & =(-D 3) U_{3}+\left(-r_{d 3} g_{1}^{\prime}(X) Z\right) U_{1}
\end{aligned}
$$

Then

$$
\begin{aligned}
D_{+} W(t) & =\left(\frac{p_{1}^{\prime}}{p_{1}}+(-D 1)+\frac{p_{3}}{p_{1}}\left(r_{d 3} g_{1}^{\prime}(X) Z\right)\right) p_{1}\left|U_{1}(t)\right| \\
& +\left(\frac{p_{2}^{\prime}}{p_{2}}+(-D 2)+\frac{p_{1}}{p_{2}}\left(r_{d 2} g_{3}^{\prime}(Z) Y\right)\right) p_{2}\left|U_{2}(t)\right| \\
& +\left(\frac{p_{3}^{\prime}}{p_{3}}+(-D 3)+\frac{p_{2}}{p_{3}}\left(r_{d 1} g_{2}^{\prime}(Y) X\right)\right) p_{3}\left|U_{3}(t)\right| .
\end{aligned}
$$

From (2.2), we have

$$
\begin{aligned}
& \frac{1}{X} \frac{d X}{d t}=\frac{\beta_{1}}{X}-\left(r_{1}+r_{d 1} g_{2}(Y)\right) \\
& \frac{1}{Y} \frac{d Y}{d t}=\frac{\beta_{2}}{Y}-\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
& \frac{1}{Z} \frac{d Z}{d t}=\frac{\beta_{3}}{Z}-\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\omega} \frac{\beta_{1}}{X} & =\int_{0}^{\omega}\left(r_{1}+r_{d 1} g_{2}(Y)\right) d t \\
\int_{0}^{\omega} \frac{\beta_{2}}{Y} & =\int_{0}^{\omega}\left(r_{2}+r_{d 2} g_{3}(Z)\right) d t \\
\int_{0}^{\omega} \frac{\beta_{3}}{Z} & =\int_{0}^{\omega}\left(r_{3}+r_{d 3} g_{1}(X)\right) d t \\
\int_{0}^{\omega} D 1 & =\int_{0}^{\omega} \frac{\beta_{1}}{X}+\frac{\beta_{2}}{Y} \\
\int_{0}^{\omega} D 2 & =\int_{0}^{\omega} \frac{\beta_{1}}{X}+\frac{\beta_{3}}{Z} \\
\int_{0}^{\omega} D 3 & =\int_{0}^{\omega} \frac{\beta_{2}}{Y}+\frac{\beta_{3}}{Z}
\end{aligned}
$$

Choose $p=p_{3}, p_{1}=\frac{1}{p}$ such that

$$
p^{2}=\frac{\frac{\beta_{1}}{X}+\frac{\beta_{2}}{Y}}{r_{d 3} g_{1}^{\prime}(X) Z},
$$

and

$$
\begin{aligned}
& \frac{\left(\frac{1}{p}\right)}{p_{2}}\left(r_{d 2} g_{3}^{\prime}(Z) Y\right) \leq \frac{\beta_{1}}{X}+\frac{\beta_{3}}{Z} \\
& \frac{p_{2}}{p}\left(r_{d 1} g_{2}^{\prime}(Y) X\right) \leq \frac{\beta_{2}}{Y}+\frac{\beta_{3}}{Z}
\end{aligned}
$$

We need

$$
\frac{r_{d 3} g_{1}^{\prime}(X) Z}{\frac{\beta_{1}}{X}+\frac{\beta_{2}}{Y}}=\frac{1}{p^{2}} \leq \frac{\frac{\beta_{1}}{X}+\frac{\beta_{3}}{Z}}{r_{d 2} g_{3}^{\prime}(Z) Y} \frac{\frac{\beta_{2}}{Y}+\frac{\beta_{3}}{Z}}{r_{d 1} g_{2}^{\prime}(Y) X}
$$

or

$$
\begin{align*}
& r_{d 1} g_{2}^{\prime}(Y) X \cdot r_{d 2} g_{3}^{\prime}(Z) Y \cdot r_{d 3} g_{1}^{\prime}(X) Z \\
\leq & \left(\frac{\beta_{1}}{X}+\frac{\beta_{2}}{Y}\right)\left(\frac{\beta_{1}}{X}+\frac{\beta_{3}}{Z}\right)\left(\frac{\beta_{3}}{Z}+\frac{\beta_{2}}{Y}\right) \tag{5.19}
\end{align*}
$$

It suffices to prove
$r_{d 1} r_{d 2} r_{d 3} \frac{n_{1} \kappa_{1}^{n_{1}} X^{n_{1}-1}}{\left(\kappa_{1}^{n_{1}}+X^{n_{1}}\right)^{2}} \frac{n_{2} \kappa_{2}^{n_{2}} Y^{n_{2}-1}}{\left(\kappa_{2}^{n_{2}}+Y^{n_{2}}\right)^{2}} \frac{n_{3} \kappa_{3}^{n_{3}} Z^{n_{3}-1}}{\left(\kappa_{3}^{n_{3}}+Z^{n_{3}}\right)^{2}} \leq 8 \cdot \frac{\beta_{1} \beta_{2} \beta_{3}}{X^{2} Y^{2} Z^{2}}$.
If $n_{1}=n_{2}=n_{3}=1$ and

$$
\begin{equation*}
r_{d 1} r_{d 2} r_{d 3} \frac{\kappa_{1} \kappa_{2} \kappa_{3}}{\beta_{1} \beta_{2} \beta_{3}} \leq 8 \tag{H2}
\end{equation*}
$$

then (H2) implies (5.19) and every positive periodic solution is orbitally asymptotically stable.
Lemma 5.1 : For each $n_{i}>1, i=1,2,3$,

$$
\max _{w>0} g_{i}^{\prime}(w) w^{2}=\max _{w>0} \frac{n_{i} \kappa_{i}^{n_{i}} w^{n_{i}+1}}{\left(\kappa_{i}^{n_{i}}+w^{n_{i}}\right)^{2}}=\frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}}
$$

Proof. Let

$$
f(w)=\frac{w^{n+1}}{\left(\kappa^{n}+w^{n}\right)^{2}}
$$

Then $f(0)=0$ and $\lim _{w \rightarrow \infty} f(w)=0$. Since

$$
f^{\prime}(w)=\frac{\left(\kappa^{n}+w^{n}\right)^{2}(n+1) w^{n}-2 w^{2 n} n\left(\kappa^{n}+w^{n}\right)}{\left(\kappa^{n}+w^{n}\right)^{4}}
$$

if $f^{\prime}(w)=0$ then $w^{n}=\left(\frac{n+1}{n-1}\right) \kappa^{n}$ and

$$
\max _{w>0} f(w)=\frac{\frac{n+1}{n-1} \kappa \sqrt[n]{\frac{n+1}{n-1}}}{\kappa^{n}\left(\frac{2 n}{n-1}\right)^{2}}
$$

Hence

$$
\max _{w>0} g_{i}^{\prime}(w) w^{2}=\frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}}
$$

Let

$$
\begin{equation*}
\frac{r_{d 1} r_{d 2} r_{d 3}}{\beta_{1} \beta_{2} \beta_{3}} \prod_{i=1}^{3} \frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}} \leq 8 \tag{H3}
\end{equation*}
$$

For $n_{i}>1, i=1,2,3$, then from Lemma 5.1, (H3) implies (5.20) and every positive periodic solution is orbitally asymptotically stable. If $n_{1}=n_{2}=n_{3}=$ 2, then (H3) implies

$$
\frac{r_{d_{1}} r_{d_{2}} r_{d_{3}}}{\beta_{1} \beta_{2} \beta_{3}} \cdot \frac{3 \sqrt{3}}{8} \kappa_{1} \frac{3 \sqrt{3}}{8} \kappa_{2} \frac{3 \sqrt{3}}{8} \kappa_{3} \leq 8
$$

From the system (2.2) we obtain differential inequalities

$$
\frac{d x}{d t} \leq \beta_{1}-r_{1} x, \frac{d y}{d t} \leq \beta_{2}-r_{2} y, \frac{d z}{d t} \leq \beta_{3}-r_{3} z
$$

Under the assumption (H2) or (H3), similarly as in the proof of Theorem 3.1 (ii), we complete the proof of Theorem 3.2 (ii).

Proof of Theorem 3.3:
(i) For the Model $M 3$, from the hypothesis ($\widehat{\mathrm{M}} 3$) we prove there exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ by solving

$$
x=K^{-1}\left(\beta_{1} h_{2}(y)\right)=G_{2}(y)
$$

where $K(x)=r_{1} x-\beta_{p} g_{1}(x)>0, K^{\prime}(x)>0$ for $x>0, K^{-1}$ is the inverse of $K(x)$, and

$$
\begin{aligned}
& y=\frac{\beta_{2}}{r_{2}} h_{3}(z)=G_{3}(z) \\
& z=\frac{\beta_{3}}{r_{3}} h_{1}(x)=G_{1}(x)
\end{aligned}
$$

The functions $G_{1}(x), G_{2}(y)$, and $G_{3}(z)$ are strictly decreasing. We note that

$$
G_{2}^{\prime}(y)=\left(K^{-1}\right)^{\prime}\left(\beta_{1} h_{2}(y)\right) \beta_{1} h_{2}^{\prime}(y)<0
$$

Then $z=G_{1}\left(G_{2}\left(G_{3}(z)\right)\right)=H(z), H(0)>0$, and $H(z)$ is decreasing in z. Thus $z=H(z)$ has a unique positive solution z^{*}. Then $y^{*}=G_{3}\left(z^{*}\right)$, $x^{*}=G_{2}\left(y^{*}\right)$. The Jacobian of the system (2.3) evaluated at $\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
J=\left[\begin{array}{ccc}
\beta_{p} g_{1}^{\prime}\left(x^{*}\right)-r_{1} & \beta_{1} h_{2}^{\prime}\left(y^{*}\right) & 0 \\
0 & -r_{2} & \beta_{2} h_{3}^{\prime}\left(z^{*}\right) \\
\beta_{3} h_{1}^{\prime}\left(x^{*}\right) & 0 & -r_{3}
\end{array}\right]
$$

The characteristic polynomial of $J\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
f(\lambda)=\lambda^{3}+A_{1} \lambda^{2}+A_{2} \lambda+A_{3}
$$

where A_{1}, A_{2}, and A_{3} are listed in (3.3). Hence by Routh-Hurwitz criterion if $A_{1} A_{2}>A_{3}$, then (a) holds. If $A_{1} A_{2}<A_{3}$ then (b) holds. We note that if $r_{1}-\beta_{p} g_{1}^{\prime}\left(x^{*}\right)>0$, then $A_{1}, A_{2}, A_{3}>0$.
(ii) Under the additional assumption ($\widehat{\mathrm{M}} 3$), we have

$$
r_{1}-\beta_{p} g_{1}^{\prime}(x)>0
$$

From the system (2.3) we obtain differential inequalities

$$
\frac{d x}{d t} \leq \beta_{1}+\beta_{p}-r_{1} x, \frac{d y}{d t} \leq \beta_{2}-r_{2} y, \frac{d z}{d t} \leq \beta_{3}-r_{3} z
$$

Under the assumption (H4), similarly as in the proof of Theorem 3.1 (ii), we complete the proof of Theorem 3.3 (ii) by replacing r_{1} by $r_{1}-\beta_{p} g_{1}^{\prime}(x)$ in (5.7),
(5.8), replacing $r_{1} X$ by $r_{1} X-\beta_{p} g_{1}(X)$ in (5.9), (5.10) and replacing $\frac{\beta_{1}}{r_{1}}$ by $\frac{\beta_{1}+\beta_{p}}{r_{1}}$ in (5.16).

Proof of Theorem 3.4:

(i) For the Model $M 4$, we prove there exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ by solving

$$
\begin{aligned}
& z=\frac{\beta_{3}}{r_{3}+r_{d 3} g_{1}(x)}=G_{1}(x), G_{1}^{\prime}(x)<0 \\
& y=\frac{\beta_{2}}{r_{2}+r_{d 2} g_{3}(z)}=G_{3}(z), G_{3}^{\prime}(z)<0
\end{aligned}
$$

Let

$$
K(x)=\frac{\beta_{1}+\beta_{p} g_{1}(x)}{x}
$$

Then

$$
K^{\prime}(x)=\frac{x \beta_{p} g_{1}^{\prime}(x)-\left(\beta_{1}+\beta_{p} g_{1}(x)\right)}{x^{2}}
$$

and

$$
K^{\prime}(x)<0 \Longleftrightarrow x g_{1}^{\prime}(x)-g_{1}(x)<\frac{\beta_{1}}{\beta_{p}}
$$

Since

$$
\begin{aligned}
x g_{1}^{\prime}(x)-g_{1}(x) & =\frac{x^{n_{1}}}{\left(\kappa^{n_{1}}+x^{n_{1}}\right)^{2}}\left[x n_{1} \kappa^{n_{1}}-\left(\kappa^{n_{1}}+x^{n_{1}}\right)\right] \\
& =\frac{x^{n_{1}}}{\left(\kappa^{n_{1}}+x^{n_{1}}\right)^{2}} \psi(x), \\
\psi^{\prime}(x)=0 & \Longleftrightarrow \kappa^{n_{1}} x^{n_{1}-1} \text { or } x=\kappa^{\frac{n_{1}}{n_{1}-1}} .
\end{aligned}
$$

Then there exists $\widetilde{x}_{1}, \widetilde{x}_{2}, 0<\widetilde{x}_{1}<\widetilde{x}_{2}$ such that

$$
\psi(x)<0 \text { for } 0<x<\widetilde{x}_{1} \text { or } x>\widetilde{x}_{2}
$$

and

$$
\psi(x)>0 \text { for } \widetilde{x}_{1}<x<\widetilde{x}_{2}
$$

Thus for $\beta_{p}>0$ small such that

$$
\max _{\widetilde{x}_{1} \leq x \leq \widetilde{x}_{2}}\left(x g_{1}^{\prime}(x)-g_{1}(x)\right)<\frac{\beta_{1}}{\beta_{p}}
$$

From assumption ($\widehat{\mathrm{M}} 4$), $K^{\prime}(x)<0$ for all $x>0$, We have $K(x)=r_{1}+r_{d 1} g_{2}(y)$, and

$$
x=K^{-1}\left(r_{1}+r_{d 1} g_{2}(y)\right)=G_{2}(y), G_{2}^{\prime}(y)<0 \text { for } y>0
$$

Hence there exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$. The Jacobian of the system (2.4) evaluated at $\left(x^{*}, y^{*}, z^{*}\right)$ is
$J\left(x^{*}, y^{*}, z^{*}\right)=$
$\left[\begin{array}{ccc}-\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right)+\beta_{p} g_{1}^{\prime}\left(x^{*}\right) & -r_{d 1} g_{2}^{\prime}\left(y^{*}\right) x^{*} & 0 \\ 0 & -\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right) & -r_{d 2} g_{3}^{\prime}\left(z^{*}\right) y^{*} \\ -r_{d 3} g_{1}^{\prime}\left(x^{*}\right) z^{*} & 0 & -\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right)\end{array}\right]$.
The characteristic polynomial of $J\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
f(\lambda)=\lambda^{3}+A_{1} \lambda^{2}+A_{2} \lambda+A_{3}
$$

where A_{1}, A_{2}, A_{3} are listed in (3.4). As in the proof of Theorem 3.1, we complete the proof of Theorem 3.4 (i).
(ii) Let $(X(t), Y(t), Z(t))$ be a ω-periodic solution of (2.4). As in the proof of Theorem 3.1 (ii). Then
$D F(X, Y, Z)=$
$\left[\begin{array}{ccc}-\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\beta_{p} g_{1}^{\prime}(X) & -r_{d 1} g_{2}^{\prime}(Y) X & 0 \\ 0 & -\left(r_{2}+r_{d 2} g_{3}(Z)\right) & -r_{d 2} g_{3}^{\prime}(Z) Y \\ -r_{d 3} g_{1}^{\prime}(X) Z & 0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right)\end{array}\right]$,
and
$D F^{[2]}(X, Y, Z)=$
$\left[-\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\beta_{p} g_{1}^{\prime}(X)\right.$
$-\left(r_{2}+r_{d 2} g_{3}(Z)\right)$
0

As in proof of Theorem 3.2 for Model $M 2$, we replace

$$
\begin{aligned}
& D 1 \text { by }\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\left(r_{2}+r_{d 2} g_{3}(Z)\right)-\beta_{p} g_{1}^{\prime}(X) \\
& D 2 \text { by }\left(r_{1}+r_{d 1} g_{2}(Y)\right)+\left(r_{3}+r_{d 3} g_{1}(X)\right)-\beta_{p} g_{1}^{\prime}(X)
\end{aligned}
$$

and keep $D 3$ in the same

$$
D 3=\left(r_{2}+r_{d 2} g_{3}(Z)\right)+\left(r_{3}+r_{d 3} g_{1}(X)\right)
$$

From (3.4)

$$
\begin{aligned}
& \frac{1}{X} \frac{d X}{d t}=\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}-\left(r_{1}+r_{d 1} g_{2}(Y)\right) \\
& \frac{1}{Y} \frac{d Y}{d t}=\frac{\beta_{2}}{Y}-\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
& \frac{1}{Z} \frac{d Z}{d t}=\frac{\beta_{3}}{Z}-\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{aligned}
$$

As in the proof of Theorem 3.2, we choose $p_{3}=p, p_{1}=\frac{1}{p}$ such that

$$
\begin{aligned}
& \int_{0}^{\omega}(-D 1)+\frac{p_{3}}{p_{1}} r_{d 3} g_{1}^{\prime}(X) Z \leq 0 \\
& \int_{0}^{\omega}(-D 2)+\frac{p_{1}}{p_{2}} r_{d 2} g_{3}^{\prime}(Z) Y \leq 0 \\
& \int_{0}^{\omega}(-D 3)+\frac{p_{2}}{p_{3}} r_{d 1} g_{2}^{\prime}(Y) X \leq 0 .
\end{aligned}
$$

Choose

$$
p=\sqrt{\frac{\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}+\frac{\beta_{2}}{Y}}{r_{d 2} g_{3}^{\prime}(Z) Y}},
$$

and p_{2} such that

$$
\frac{r_{d 1} g_{2}^{\prime}(Y) X}{\frac{\beta_{3}}{Z}+\frac{\beta_{2}}{Y}} \leq \frac{p_{3}}{p_{2}} \leq \frac{\left(\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}+\frac{\beta_{2}}{Y}\right)}{r_{d 3} g_{1}^{\prime}(X) Z} \frac{\left(\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}+\frac{\beta_{3}}{Z}\right)}{r_{d 2} g_{3}^{\prime}(Z) Y}
$$

We need

$$
\begin{aligned}
& \left(r_{d 1} g_{2}^{\prime}(Y) X\right)\left(r_{d 2} g_{3}^{\prime}(Z) Y\right)\left(r_{d 3} g_{1}^{\prime}(X) Z\right) \\
\leq & \left(\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}+\frac{\beta_{2}}{Y}\right)\left(\frac{\beta_{1}}{X}+\beta_{p} \frac{g_{1}(X)}{X}+\frac{\beta_{3}}{Z}\right)\left(\frac{\beta_{3}}{Z}+\frac{\beta_{2}}{Y}\right) .
\end{aligned}
$$

Let

$$
A=\frac{\beta_{1}+\beta_{p} g_{1}(X)}{X}, B=\frac{\beta_{2}}{Y}, C=\frac{\beta_{3}}{Z} .
$$

Then

$$
\begin{aligned}
& \left(r_{d 1} g_{2}^{\prime}(Y) X\right)\left(r_{d 2} g_{3}^{\prime}(Z) Y\right)\left(r_{d 3} g_{1}^{\prime}(X) Z\right) \\
\leq & (A+B)(A+C)(B+C) \\
= & A^{2} C+A^{2} B+A B^{2}+A B C+A C^{2}+B C^{2}+B^{2} C+A B C .
\end{aligned}
$$

Apply the inequality,

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

whenever $a_{i}>0, i=1,2, \cdots, n$. We obtain
$A^{2} C+A^{2} B+A B^{2}+A B C+A C^{2}+B C^{2}+B^{2} C+A B C \geq 8 \sqrt[8]{A^{8} B^{8} C^{8}}$.
It suffices to show

$$
\left(r_{d 1} g_{2}^{\prime}(Y) X\right)\left(r_{d 2} g_{3}^{\prime}(Z) Y\right)\left(r_{d 3} g_{1}^{\prime}(X) Z\right) \leq 8\left(\frac{\beta_{1} \beta_{2} \beta_{3}}{X Y Z}+\frac{\beta_{p} g_{1}(X) \beta_{2} \beta_{3}}{X Y Z}\right)
$$

or
$\left(r_{d 1} g_{2}^{\prime}(Y) Y^{2}\right)\left(r_{d 2} g_{3}^{\prime}(Z) Z^{2}\right)\left(r_{d 3} g_{1}^{\prime}(X) X^{2}\right) \leq 8 \beta_{2} \beta_{3}\left(\beta_{1}+\beta_{p} g_{1}(X)\right)$.
By Lemma 5.1, it suffices to show

$$
\begin{equation*}
\prod_{i=1}^{3} r_{d i} \frac{\kappa_{i}\left(n_{i}+1\right)\left(n_{i}-1\right) \sqrt[n_{i}]{\frac{n_{i}+1}{n_{i}-1}}}{4 n_{i}} \leq 8 \beta_{1} \beta_{2}\left(\beta_{1}+\beta_{p} g_{1}\left(x_{l o w}\right)\right) \tag{H4}
\end{equation*}
$$

where $x_{\text {low }}$ is the root of

$$
\beta_{1}+\beta_{p} g_{1}(X)=\left(r_{1}+r_{d 1} g_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right) X
$$

We note that $x_{\text {low }}$ follow by the below inequality

$$
\begin{aligned}
\frac{d X}{d t} & =\beta_{1}+\beta_{p} g_{1}(X)-\left(r_{1}+r_{d 1} g_{2}(Y)\right) X \\
& \geq \beta_{1}+\beta_{p} g_{1}(X)-r_{1} X-r_{d 1} g_{2}\left(\frac{\beta_{2}}{r_{2}}\right) X
\end{aligned}
$$

From the system (2.4) we obtain differential inequalities

$$
\frac{d x}{d t} \leq \beta_{1}+\beta_{p}-r_{1} x, \frac{d y}{d t} \leq \beta_{2}-r_{2} y, \frac{d z}{d t} \leq \beta_{3}-r_{3} z
$$

Since (H4) implies (5.21). Under the assumption (H4), similarly as in the proof of Theorem 3.1 (ii), we complete the proof of Theorem 3.4 (ii) by replacing $\frac{\beta_{1}}{r_{1}}$ by $\frac{\beta_{1}+\beta_{p}}{r_{1}}$ in (5.16).

Proof of Theorem 3.5:

(i) For the Model M5, we prove that there exists a unique positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ by solving

$$
\begin{aligned}
& x=\frac{\beta_{1} h_{2}(y)}{r_{1}+r_{d 1} g_{2}(y)}=G_{2}(y) \downarrow \text { in } y \\
& y=\frac{\beta_{2} h_{3}(z)}{r_{2}+r_{d 2} g_{3}(z)}=G_{3}(z) \downarrow \text { in } z \\
& z=\frac{\beta_{3} h_{1}(x)}{r_{3}+r_{d 3} g_{1}(x)}=G_{1}(x) \downarrow \text { in } x .
\end{aligned}
$$

Hence we solve $z=G_{1}\left(G_{2}\left(G_{3}(z)\right)\right)=H(z)$ is a strictly decreasing function with $H(0)>0$. Hence the fixed point z^{*} is unique and the positive equilibrium $\left(x^{*}, y^{*}, z^{*}\right)$ is unique. The Jacobian of the system (2.5) evaluated at $\left(x^{*}, y^{*}, z^{*}\right)$ is
$J\left(x^{*}, y^{*}, z^{*}\right)=$
$\left[\begin{array}{ccc}-\left(r_{1}+r_{d 1} g_{2}\left(y^{*}\right)\right) & \beta_{1} h_{2}^{\prime}\left(y^{*}\right)-r_{d 1} g_{2}^{\prime}\left(y^{*}\right) x^{*} & 0 \\ 0 & -\left(r_{2}+r_{d 2} g_{3}\left(z^{*}\right)\right) & \beta_{3} h_{3}^{\prime}\left(z^{*}\right)-r_{d 2} g_{3}^{\prime}\left(z^{*}\right) y^{*} \\ \beta_{3} h_{1}^{\prime}\left(x^{*}\right)-r_{d 3} g_{1}^{\prime}\left(x^{*}\right) z^{*} & 0 & -\left(r_{3}+r_{d 3} g_{1}\left(x^{*}\right)\right)\end{array}\right]$.
The characteristic polynomial of $J\left(x^{*}, y^{*}, z^{*}\right)$ is

$$
f(\lambda)=\lambda^{3}+A_{1} \lambda^{2}+A_{2} \lambda+A_{3} .
$$

where A_{1}, A_{2}, and A_{3} are listed in (3.5). As in the proof of Theorem 3.1, we complete the proof of Theorem 3.5 (i).
(ii) Let $(X(t), Y(t), Z(t))$ be a ω-periodic solution of (2.5). As in the proof of Theorem 3.1 (ii),

$$
D F(X, Y, Z)=\left[\begin{array}{ccc}
-\left(r_{1}+r_{d 1} g_{2}(Y)\right) & \beta_{1} h_{2}^{\prime}(Y)-r_{d 1} g_{2}^{\prime}(Y) X & 0 \\
0 & -\left(r_{2}+r_{d 2} g_{3}(Z)\right) & \beta_{3} h_{3}^{\prime}(X)-r_{d 2} g_{3}^{\prime}(Z) Y \\
\beta_{3} h_{1}^{\prime}(X)-r_{d 3} g_{1}^{\prime}(X) Z & 0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
& D F^{[2]}(X, Y, Z)= \\
& {\left[\begin{array}{ccc}
-\left(r_{1}+r_{d 1} g_{2}(Y)\right) & \beta_{2} h_{3}^{\prime}(Z)-r_{d 2} g_{3}^{\prime}(Z) Y & 0 \\
-\left(r_{2}+r_{d 2} g_{3}(Z)\right) & -\left(r_{1}+r_{d 1} g_{2}(Y)\right) & \beta_{1} h_{2}^{\prime}(Y)-r_{d 1} g_{2}^{\prime}(Y) X \\
0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right) & -\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
-\left(\beta_{3} h_{1}^{\prime}(X)-r_{d 3} g_{1}^{\prime}(X) Z\right) & 0 & -\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{array}\right]}
\end{aligned}
$$

As in the proof of Theorem 3.1 for Model $M 1$, we consider

$$
\frac{d U}{d t}=D F^{[2]}(X, Y, Z) U
$$

and introduce the function

$$
W(X, Y, Z ; U)=\sum_{i=1}^{3} p_{i}(X, Y, Z)\left|U_{i}\right|
$$

Let $W(t)=W(X(t), Y(t), Z(t)) ; U(t))$ and compute

$$
\begin{aligned}
& D_{+} W(t)=\sum_{i=1}^{3} p_{i}^{\prime}(t)\left|U_{i}(t)\right|+p_{i}(t) D_{+}\left(\left|U_{i}(t)\right|\right) \\
& \leq\left(\frac{p_{1}^{\prime}(t)}{p_{1}(t)}-\left(r_{1}+r_{d 1} g_{2}(Y)+r_{2}+r_{d 2} g_{3}(Z)\right)+\frac{p_{3}(t)}{p_{1}(t)}\left(-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z\right)\right) p_{1}(t)\left|U_{1}(t)\right| \\
& +\left(\frac{p_{2}^{\prime}(t)}{p_{2}(t)}-\left(r_{1}+r_{d 1} g_{2}(Y)+r_{3}+r_{d 3} g_{1}(X)\right)+\frac{p_{1}(t)}{p_{2}(t)}\left(-\beta_{2} h_{3}^{\prime}(Z)+r_{d 2} g_{3}^{\prime}(Z) Y\right)\right) p_{2}(t)\left|U_{2}(t)\right| \\
& +\left(\frac{p_{3}^{\prime}(t)}{p_{3}(t)}-\left(r_{2}+r_{d 2} g_{3}(Z)+r_{3}+r_{d 3} g_{1}(X)\right)+\frac{p_{2}(t)}{p_{3}(t)}\left(-\beta_{1} h_{2}^{\prime}(Y)+r_{d 1} g_{2}^{\prime}(Y) X\right)\right) p_{3}(t)\left|U_{3}(t)\right| .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{1}{X} \frac{d X}{d t}=\frac{\beta_{1} h_{2}(Y)}{X}-\left(r_{1}+r_{d 1} g_{2}(Y)\right) \\
& \frac{1}{Y} \frac{d Y}{d t}=\frac{\beta_{2} h_{3}(Z)}{Y}-\left(r_{2}+r_{d 2} g_{3}(Z)\right) \\
& \frac{1}{Z} \frac{d Z}{d t}=\frac{\beta_{3} h_{1}(X)}{Z}-\left(r_{3}+r_{d 3} g_{1}(X)\right)
\end{aligned}
$$

we need

$$
\begin{aligned}
& \frac{p_{3}(t)}{p_{1}(t)}\left(-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z\right) \leq \frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y} \\
& \frac{p_{1}(t)}{p_{2}(t)}\left(-\beta_{2} h_{3}^{\prime}(Z)+r_{d 2} g_{3}^{\prime}(Z) Y\right) \leq \frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{3} h_{1}(X)}{Z} \\
& \frac{p_{2}(t)}{p_{3}(t)}\left(-\beta_{1} h_{2}^{\prime}(Y)+r_{d 1} g_{2}^{\prime}(Y) X\right) \leq \frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}
\end{aligned}
$$

Choose $p_{3}=p, p_{1}=\frac{1}{p}$,

$$
p=\sqrt{\frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}}{-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z}}
$$

We need

$$
\frac{-\beta_{1} h_{2}^{\prime}(Y)+r_{d 1} g_{2}^{\prime}(Y) X}{\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}} \leq \frac{p_{3}}{p_{2}} \leq \frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}}{-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z} \cdot \frac{\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{3} h_{1}(X)}{Z}}{-\beta_{2} h_{3}^{\prime}(Z)+r_{d 2} g_{3}^{\prime}(Z) Y}
$$

or

$$
\begin{aligned}
& \left(-\beta_{1} h_{2}^{\prime}(Y)+r_{d 1} g_{2}^{\prime}(Y) X\right)\left(-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z\right)\left(-\beta_{2} h_{3}^{\prime}(Z)+r_{d 2} g_{3}^{\prime}(Z) Y\right) \\
\leq & \left(\frac{\beta_{2} h_{3}(Z)}{Y}+\frac{\beta_{3} h_{1}(X)}{Z}\right)\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{2} h_{3}(Z)}{Y}\right)\left(\frac{\beta_{1} h_{2}(Y)}{X}+\frac{\beta_{3} h_{1}(X)}{Z}\right) .
\end{aligned}
$$

It suffices to show

$$
\begin{align*}
& \left(-\beta_{1} h_{2}^{\prime}(Y)+r_{d 1} g_{2}^{\prime}(Y) X\right)\left(-\beta_{3} h_{1}^{\prime}(X)+r_{d 3} g_{1}^{\prime}(X) Z\right)\left(-\beta_{2} h_{3}^{\prime}(Z)+r_{d 2} g_{3}^{\prime}(Z) Y\right) \\
\leq & 8 \frac{\beta_{1} \beta_{2} \beta_{3} h_{1}(X) h_{2}(Y) h_{3}(Z)}{X Y Z} \tag{5.22}
\end{align*}
$$

Let

$$
\begin{align*}
h_{i}(w) & =\frac{\kappa_{i}^{n_{i}}}{\kappa_{i}^{n_{i}}+w^{n_{i}}}, h_{i}(0)=1 \\
h_{i}^{\prime}(w) & =\frac{-\kappa_{i}^{n_{i}} n_{i} w^{n_{i}-1}}{\left(\kappa_{i}^{n_{i}}+w^{n_{i}}\right)^{2}} \\
g_{i}(w) & =\frac{w^{n_{i}}}{\kappa_{i}^{n_{i}}+w^{n_{i}}} \tag{5.23}\\
g_{i}^{\prime}(w) & =\frac{\kappa_{i}^{n_{i}} n_{i} w^{n_{i}-1}}{\left(\kappa_{i}^{n_{i}}+w^{n_{i}}\right)^{2}}
\end{align*}
$$

for $i=1,2,3$. Substituting (5.23) into (5.22) yields

$$
\begin{align*}
8 \beta_{1} \beta_{2} \beta_{3} \kappa_{1}^{n_{1}} \kappa_{2}^{n_{2}} \kappa_{3}^{n_{3}} \geq & \left(\beta_{1} \frac{\kappa_{2}^{n_{2}} n_{2} Y^{n_{2}}}{\kappa_{2}^{n_{2}}+Y^{n_{2}}}+\frac{r_{d 1} \kappa_{2}^{n_{2}} n_{2} Y^{n_{2}}}{\kappa_{2}^{n_{2}}+Y^{n_{2}}} X\right) \\
& \cdot\left(\beta_{3} \frac{\kappa_{1}^{n_{1}} n_{1} X^{n_{1}}}{\kappa_{1}^{n_{1}}+X^{n_{1}}}+\frac{r_{d 3} \kappa_{1}^{n_{1}} n_{1} X^{n_{1}}}{\kappa_{1}^{n_{1}}+X^{n_{1}}} Z\right) \tag{5.24}\\
& \cdot\left(\beta_{2} \frac{\kappa_{3}^{n_{3}} n_{3} Z^{n_{3}}}{\kappa_{3}^{n_{3}}+Z^{n_{3}}}+\frac{r_{d 2} \kappa_{3}^{n_{3}} n_{3} Z^{n_{3}}}{\kappa_{3}^{n_{3}}+Z^{n_{3}}} Y\right)
\end{align*}
$$

Since

$$
\begin{aligned}
\frac{d X}{d t} & =\beta_{1} h_{2}(Y)-\left(r_{1}+r_{d 1} g_{2}(Y)\right) X \\
& \leq \beta_{1} h_{2}(0)-\left(r_{1}+r_{d 1} \cdot 0\right) X \\
& =\beta_{1}-r_{1} X
\end{aligned}
$$

Hence $X(t) \leq \frac{\beta_{1}}{r_{1}}$. Similarly $Y(t) \leq \frac{\beta_{2}}{r_{2}}$ and $Z(t) \leq \frac{\beta_{3}}{r_{3}}$. Let

$$
\begin{align*}
8 \beta_{1} \beta_{2} \beta_{3} \geq & \left(n_{2} g_{2}\left(\frac{\beta_{2}}{r_{2}}\right)\right)\left(\beta_{1}+r_{d 1} \frac{\beta_{1}}{r_{1}}\right) \\
& \cdot\left(n_{1} g_{1}\left(\frac{\beta_{1}}{r_{1}}\right)\right)\left(\beta_{3}+r_{d 3} \frac{\beta_{3}}{r_{3}}\right) \tag{H5}\\
& \cdot\left(n_{3} g_{3}\left(\frac{\beta_{3}}{r_{3}}\right)\right)\left(\beta_{2}+r_{d 2} \frac{\beta_{2}}{r_{2}}\right)
\end{align*}
$$

be (H5). Then (H5) implies (5.24). Let

$$
\begin{equation*}
8 \geq\left(1+\frac{r_{d 1}}{r_{1}}\right) n_{2} \cdot\left(1+\frac{r_{d 3}}{r_{3}}\right) n_{1} \cdot\left(1+\frac{r_{d 2}}{r_{2}}\right) n_{3} . \tag{H6}
\end{equation*}
$$

Then (H6) implies (H5). From the system (2.5) we obtain differential inequalities

$$
\frac{d x}{d t} \leq \beta_{1}-r_{1} x, \frac{d y}{d t} \leq \beta_{2}-r_{2} y, \frac{d z}{d t} \leq \beta_{3}-r_{3} z
$$

Under the assumption (H5), similarly as in the proof of Theorem 3.1 (ii), we complete the proof of Theorem 3.5 (ii).

Conflict of Interest. No competing interests need to be declared for two authors.
Acknowledgments. C.P.Hsu acknowledges support from Academia Sinica and the Ministry of Science and Technology of Taiwan (MOST 110-2123-M-001-005 and $111-2123-\mathrm{M}-001-003-$), and S. B. Hsu is supported by MOST 109-2115-M-007-005. Both of us acknowledge Yu-Chuan Chen for his help in numerical test.

REFERENCES

[1] S. M. Castillo-Hair, E. R. Villota and A. M. Coronado, Design principles for robust oscillatory behavior, Systems and Synthetic Biology, 9 (2015), 125.
[2] J. B. Chang and Jr. F. James, E. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle, Nature, 500 (2013), 603-607.
[3] A. Ciliberto, B. Novak and J. J. Tyson, Steady states and oscillations in the p53/Mdm2 network, Cell Cycle, 4 (2005), 488-493.
[4] A. Eldar and M. B. Elowitz, Functional roles for noise in genetic circuits, Nature, 467 (2010), 167-173.
[5] M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic Gene Expression in a Single Cell, Science, 297 (2002), 1183-1186.
[6] M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335-338.
[7] J. E. Ferrell, T. Y.-C. Tsai and Q. Yang, Modeling the cell cycle: Why do certain circuits oscillate?, Cell, 144 (2011), 874-885.
[8] A. Goldbeter, C. Gérardrard, D. Gonze, J.-C. Leloup and G. Dupont, Systems biology of cellular rhythms, FEBS Lett., 586 (2012), 2955-2965.
[9] K. Hara, P. Tydeman and M. Kirschner, A cytoplasmic clock with the same period as the division cycle in Xenopus eggs, Proc. Natl. Acad. Sci. U.S.A., 77 (1980), 462-466.
[10] M. Hirsch, Systems of differential equations which are competitive or cooperative: I. limit sets, SIAM J. Math, Analysis, 13 (1982), 167-179.
[11] J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett, 7 (1994), 65-70.
[12] S. B. Hsu, Ordinary Differential Equation with Application, 2nd edition, World Scientific Press, 2013.
[13] S. B. Hsu, Y. Wang and H. Zhou, Analysis of a mathematical model arising from Barnacle-Algae-Mussel interactions, SIAM J.Appl. Math., 79 (2019), 2032-2053.
[14] I. Joanito, J.-W. Chu, S.-H. Wu and C.-P. Hsu, An incoherent feed-forward loop switches the Arabidopsis clock rapidly between two hysteretic states, Sci Rep, 8 (2018), 13944.
[15] Y. Joanito, C.-C. S. Yan, J.-W. Chu, S.-H. Wu and C.-P. Hsu, Basal leakage in oscillation: Coupled transcriptional and translational control using feed-forward loops, PLOS Computational Biology, 16 (2020), e1007740.
[16] J. Lewis, Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator, Curr. Biol., 13 (2003), 1398-1408.
[17] M. Li and J. Muldowney, Global stability for SEIR model in epidemiology, Math. Bios., 125 (1005), 115-164.
[18] K. Maeda and H. Kurata, A symmetric dual feedback system provides a robust and entrainable oscillator, PLoS One, 7 (2012), e30489.
[19] G. C. Monsalve, C. V. Buskirk and A. R. Frand, LIN-42/PERIOD Controls Cyclical and Developmental Progression of C. elegans Molts, Curr. Biol., 21 (2011), 2033-2045.
[20] J. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain J.Math, 20 (1990), 857-872.
[21] I. Palmeirim, D. Henrique, D. Ish-Horowicz and O. Pourquié, Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis, Cell, 91 (1997), 639-648.
[22] J. R. Pomerening, E. D. Sontag and J. E. Ferrell, Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2, Nat. Cell Biol., 5 (2003), 346-351.
[23] L. Potvin-Trottier, N. D. Lord, G. Vinnicombe and J. Paulsson, Synchronous longterm oscillations in a synthetic gene circuit, Nature, 538 (2016), 514-517.
[24] O. Pourquié, The segmentation clock: Converting embryonic time into spatial pattern, Science, 301 (2003), 328-330.
[25] S. Ray, U. K. Valekunja, A. Stangherlin, S. A. Howell, A. P. Snijders, G. Damodaran and A. B. Reddy, Circadian rhythms in the absence of the clock gene Bmal1, Science, $\mathbf{3 6 7}$ (2020), 80-806.
[26] S. M. Reppert and D. R. Weaver, Coordination of circadian timing in mammals, Nature, 418 (2002), 935-941.
[27] H. L. Smith, Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems, Math Survey and Monographs, 41, Amer.Math. Soc,Providence, Rhode Island, 1995.
[28] J. Stelling, E. D. Gilles and F. J. Doyle, Robustness properties of circadian clock architectures, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 13210-13215.
[29] K.-A. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki and M. Menaker, Entrainment of the circadian clock in the liver by feeding, Science, 291 (2001), 490-493.
[30] J. S. Takahashi, Transcriptional architecture of the mammalian circadian clock, Nat. Rev. Genet., 18 (2017), 164-179.
[31] J. M. Tennessen, H. F. Gardner, M. L. Volk and A. E. Rougvie, Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42, Dev. Biol., 289 (2006), 30-43.
[32] T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang and J. E. Ferrell Robust, Tunable biological oscillations from interlinked positive and negative feedback loops, Science, 321 (2008), 126-129.
[33] D. Xiao and W. Li, Limit cycle for the competitive three dimensional Lotka-Volterra system, Journal of Differntial Equations, 164 (2000), 1-15.

Received July 2022; revised November 2022; early access December 2022.

[^0]: 2020 Mathematics Subject Classification. 35K57, 92D25.
 Key words and phrases. Repressilator; transcriptional control; post-translational control; Hill function of repressive process; Hill function of activating process; positive feedback; threedimensional competitive system; Poincaré-Bendixson Theorem; global stability of positive equilibrium; limit cycle; orbital stability of periodic orbit; second compound matrix.

 * To whom correspondence should be addressed.

