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Abstract. In this paper, we study mathematical models of three dimensional
competitive systems originated from the represillator and their variants. There

are two parts for the mathematical results. In part I, we first prove the unique-

ness of the positive equilibrium (x∗, y∗, z∗). Then we present necessary and suf-
ficient conditions for their local asymptotic stability and instability. In part II,

we present sufficient conditions for the global asymptotic stability of (x∗, y∗, z∗)
provided (x∗, y∗, z∗) is locally asymptotic stable.

1. Introduction. Periodic oscillation is an important form of dynamics. The fun-
damental and simple harmonic oscillator serves as a classic example of linear os-
cillators. However, the stability of linear oscillator can be easily changed with a
nonlinear perturbation. The well-known Hopf bifurcation as the generation of pe-
riodic orbits has been a core element in nonlinear dynamics for oscillations [7].
Periodic oscillation is a vital element for functional dynamics in biology. With a
network of biochemical regulation, the levels of components in a cell or an organism
can oscillate periodically, which allows the cell to “count” time and to entrain the
cell differentiation process with developmental stages [24, 19]. With these innate
clocks, cells predict and prepare for the time-dependent events by signaling the cell,
where gene expression[30, 31] or other biochemical events such as cell cycles[2, 9, 22],
circadian clocks [25, 26, 29] and somite formation [16, 21], among others are taking
place in the right time orders.

In viewing cells as tiny biochemical reactors, the uncertainty and heterogeneity in
the biochemical regulations has been an important aspect of study, a phenomenon
that is often called “noise”[5]. While noise can be taken as an advantageous addition
to the system[4], in many cases, it is necessary to cope with such uncertainties to
maintain many functions. In coping with such noises, a faithful and robust oscillator
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is often required. It has been reported that oscillators gain robustness through the
coupling with dual negative feedback[18, 28], interlinking a negative feedback with
a positive feedback[3, 8, 14], or incoherent feed-forward loops [14].

An artificially synthesized oscillator in E. coli cells, the represillator[6], has drawn
much attention. It was shown that tiny E. coli cells with this very simple 3-gene
network can produce oscillation in reporter fluorescence protein, but such oscilla-
tions are not robust, as a cell can cease to oscillate, and the phase of oscillation
was not kept well. While an improved version of represillator is reported years
afterwards[23], various mechanisms are also known to keep oscillations robust[1].
For example, a positive feedback provides the system offers a tunability in the oscil-
lation frequency but maintains the amplitude [32]. Positive feedback loops facilitate
hysteric two-state building, while feed-ford structure allows a faster switch in circa-
dian clocks. [14] It was also shown that such a represillator circuit cannot oscillate
properly if the genes are leaky in their transcriptional regulation, and a transla-
tional control, such as protein degradation or activation/deactivation, is important
to keep the oscillation[15]. The represillator as a classic and almost the simplest bi-
ological oscillator has been a very suitable object for theoretical and computational
studies.

In this paper we shall study the three-dimensional competition systems deriving
from represillator. Especially we analyze the mathematical models of M1 −M5
in [15] in which the authors investigate the roles of each transcriptional and post-
translational regulations and their combination of these two regulations. Their
results provide insights into the plausible importance in coupling transcription and
post-translation control in the clock system.

Fortunately these three-dimensional systems are competition systems of special
types. M.Hirsch [10] in 1980 proved the Poincaré-Bendixson Theorem for three
dimensional competition systems. We apply Poincaré-Bendixson Theorem directly
to show that the solution either tends to a unique locally stable equilibrium or tends
to a limit cycle. Further more we apply the second compound method introduced
by Muldoney [20] to prove that for the models M1-M5 under some conditions
every periodic orbit, whenever it exists, is orbitally asymptotically stable. Thus we
can show that if the unique equilibrium is locally asymptotically stable, then it is
globally asymptotically stable. However, if the limit cycle exists then it is orbitally
asymptotically stable. But we are unable to prove that the limit cycle is unique.

In Section 2 we state the Models M1 −M5 in [15]. The main results for the
Models M1−M5 are presented in Section 3. Section 4 is the section of numerical
test results and discussion. We deferred the proofs of Theorem 3.1 to Theorem 3.5
to the Section 5.

2. The Models. Let hi(w) =
κni
i

κni
i + wni

represent Hill function of repressive pro-

cess and gi(w) =
wni

κni
i + wni

represents Hill function of activating process. In the

following we present mathematical models M1−M5.
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Model M1 : transcriptional control based repressilator

dx

dt
= β1h2(y)− r1x

dy

dt
= β2h3(z)− r2y

dz

dt
= β3h1(x)− r3z

(2.1)

where x, y, z represents the concentration of genes and ri, βi, i = 1, 2, 3 are degra-
dation rate and gene expression rate respectively.

Figure 2.1

Model M2 : Post-translational control based repressilator

dx

dt
= β1 − (r1 + rd1g2(y))x

dy

dt
= β2 − (r2 + rd2g3(z))y

dz

dt
= β3 − (r3 + rd3g1(x))z

(2.2)

where rdi , i = 1, 2, 3, is the controlled degradation rate.

Figure 2.2

Model M3 : Transcriptional control based repressilator with additional
positive feed back
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dx

dt
= β1h2(y) + βpg1(x)− r1x

dy

dt
= β2h3(z)− r2y

dz

dt
= β3h1(x)− r3z

(2.3)

where βp is the positive feedback rate.

Figure 2.3

Model M4 : Post-translational control based repressilator with additional
positive feedback loop

dx

dt
= β1 + βpg1(x)− (r1 + rd1g2(y))x

dy

dt
= β2 − (r2 + rd2g3(z))y

dz

dt
= β3 − (r3 + rd3g1(x))z

(2.4)

Figure 2.4

Model M5 : Coupled transcriptional and post-translational control-based
oscillator
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dx

dt
= β1h2(y)− (r1 + rd1g2(y))x

dy

dt
= β2h3(z)− (r2 + rd2g3(z))y

dz

dt
= β3h1(x)− (r3 + rd3g1(x))z

(2.5)

Figure 2.5

3. Statements of Main Results. Before we state main results we state the
Poincaré-Bendixson Theorem for three-dimensional competitive systems.
Definition 3.1 : Consider the autonomous system of ordinary differential equations

x′ = f(x), x = (x1, · · · , xn) ∈ Rn (E)

where f = (fi, · · · , fn) is continuously differentiable on an open set D ⊆ Rn. The
system (E) is called a competitive system on D if D is p-convex and

∂fi
∂xj
≤ 0, i 6= j, x ∈ D.

We recall that D is p-convex if tx + (1 − t)y ∈ D for all t ∈ [0, 1] whenever
x, y ∈ D and x ≤ y. In the following we state the Poincaré-Bendixson Theorem for
three-dimensional competitive systems.
Theorem A ([27], p.41) : A compact limit set of a competitive system in R3 that
contains no equilibrium points is a periodic orbit.

Next we state the main results for Model M1- Model M5.

Theorem 3.1 : For Model M1, the system (2.1) satisfies:

(i) There exists a unique positive equilibrium (x∗, y∗, z∗). Let

A1 = r1 + r2 + r3,

A2 = r1r2 + r1r3 + r2r3,

A3 = r1r2r3 + (−β1β2β3h
′
1(x∗)h′2(y∗)h′3(z∗)).

(3.1)

(a) (x∗, y∗, z∗) is locally asymptotically stable if A1A2 > A3.
(b) (x∗, y∗, z∗) is unstable with one dimensional stable manifold W s(x∗, y∗, z∗) if

A1A2 < A3.
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(ii) Let

n1

(
β1

r1

)n1

κn1
1 +

(
β1

r1

)n1
·

n2

(
β2

r2

)n2

κn2
2 +

(
β2

r2

)n2
·

n3

(
β3

r3

)n3

κn3
3 +

(
β3

r3

)n3
≤ 8. (H1)

Under hypothesis (H1), the following conclusions (C1) and (C2) hold.

(C1) If (x∗, y∗, z∗) is locally asymptotically stable then (x∗, y∗, z∗) is globally
asymptotically stable in R+3.

(C2) If (x∗, y∗, z∗) is unstable, for the trajectory with (x(0), y(0), z(0)) /∈
W s(x∗, y∗, z∗) tends to a limit cycle Γ.

Remark 3.1 :

(i) If n1n2n3 ≤ 8, then (H1) holds.

(ii) If
βi
ri
≤ 1 for i = 1, 2, 3, then for ni large lim

ni→∞

(
ni

(
βi
ri

)ni
)

= 0. Hence

(H1) holds.

Theorem 3.2 : For Model M2, the system (2.2) satisfies:

(i) There exists a unique positive equilibrium (x∗, y∗, z∗). Let

A1 = (r1 + rd1g2(y∗)) + (r2 + rd2g3(z∗)) + (r3 + rd3g1(x∗)),

A2 = (r1 + rd1g2(y∗))(r2 + rd2g3(z∗)) + (r1 + rd1g2(y∗))(r3 + rd3g1(x∗))

+ (r2 + rd2g3(z∗))(r3 + rd3g1(x∗)),

A3 = (r1 + rd1g2(y∗))(r2 + rd2g3(z∗))(r3 + rd3g1(x∗))

+ rd1g
′
2(y∗)x∗rd2g

′
3(z∗)y∗rd3g

′
1(x∗)z∗.

(3.2)

Then (a) and (b) of Theorem 3.1(i) holds.
(ii) If n1 = n2 = n3 = 1 and

rd1rd2rd3
κ1κ2κ3

β1β2β3
≤ 8 (H2)

or ni > 1, i = 1, 2, 3 and

rd1rd2rd3

β1β2β3

3∏
i=1

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
≤ 8. (H3)

Then under hypothesis (H2) or (H3), the conclusions (C1) and (C2) of
Theorem 3.1(ii) hold.

Remark 3.2 : If n1 = n2 = n3 = 2, then (H3) implies

rd1rd2rd3

β1β2β3

3
√

3

8
κ1

3
√

3

8
κ2

3
√

3

8
κ3 ≤ 8.

Theorem 3.3 : Assume

r1x > βpg1(x), and r1 > βpg
′
1(x), for all x > 0. (M̂3)

For Model M3, the system (2.3) satisfies:
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(i) There exists a unique positive equilibrium (x∗, y∗, z∗). Let

A1 = r1 − βpg′1(x∗) + r2 + r3 > 0

A2 = (r1 − βpg′1(x∗))r2 + (r1 − βpg′1(x∗))r3 + r2r3 > 0

A3 = (r1 − βpg′1(x∗))r2r3 + (−β1β2β3h
′
1(x∗)h′2(y∗)h′3(z∗)) > 0.

(3.3)

Then (a) and (b) of Theorem 3.1(i) hold.
(ii) Let (H1) hold. Then the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.

Remark 3.3 : (M̂3) says the positive feedback term βpg1(x) in the system (2.3) is
small. From [32] Model M3 is more robust than Model M1 in the sense of producing
oscillations.

Theorem 3.4 : Assume

xg′1(x)− g1(x) <
β1

βp
, x > 0 for βp > 0 sufficiently small,

βp <
1

β1
max

x̃1<x<x̃2

(xg′1(x)− g1(x)) where

xg′1(x)− g1(x) < 0 for 0 < x < x̃1 or x > x̃2,

xg′1(x)− g1(x) > 0 for x̃1 < x < x̃2.

(M̂4)

For Model M4, the system (2.4) satisfies:

(i) There exists a unique positive equilibrium (x∗, y∗, z∗). Let

r̃1 = r1 + rd1g2(y∗)− βpg′1(x∗)

r̃2 = r2 + rd2g3(z∗)

r̃3 = r3 + rd3g1(x∗),

and
A1 = r̃1 + r̃2 + r̃3 > 0

A2 = r̃1r̃2 + r̃3r̃3 + r̃1r̃3 > 0

A3 = r̃1r̃2r̃3 + rd1rd2rd3g
′
1(x∗)g′2(y∗)g′3(z∗)x∗y∗z∗ > 0.

(3.4)

Then (a) and (b) of Theorem 3.1(i) holds.
(ii) If

3∏
i=1

rdi

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
≤ 8β1β2(β1 + βpg1(xlow)) (H4)

where xlow is the root of

β1 + βpg1(X) =

(
r1 + rd1g2

(
β2

r2

))
X,

and xlow is a lower bound of X(t). Then the conclusions (C1) and (C2) of
Theorem 3.1(ii) hold.

Remark 3.4 : (M̂4) says the positive feedback term in the system (2.4) is small.
From [32] the ModelM4 is more robust that the ModelM2 in producing oscillations.

Theorem 3.5 : For Model M5, the system (2.5) satisfies:
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(i) There exists a unique positive equilibrium (x∗, y∗, z∗). Let

r̃1 = r1 + rd1g2(y∗)

r̃2 = r2 + rd2g3(z∗)

r̃3 = r3 + rd3g1(x∗),

and

A1 = r̃1 + r̃3 + r̃3,

A2 = r̃1r̃2 + r̃2r̃3 + r̃1r̃3,

A3 = r̃1r̃2r̃3

+ (rd1g
′
2(y∗)x∗ − β1h

′
2(y∗))(rd2g

′
3(z∗)y∗ − β2h

′
3(z∗))(rd3g

′
1(x∗)z∗ − β3h

′
1(x∗)).

(3.5)
Then (a) and (b) of Theorem 3.1(i) hold.

(ii) Let

8β1β2β3 ≥
(
n2g2

(
β2

r2

))(
β1 + rd1

β1

r1

)
·
(
n1g1

(
β1

r1

))(
β3 + rd3

β3

r3

)
·
(
n3g3

(
β3

r3

))(
β2 + rd2

β2

r2

)
.

(H5)

If (H5) holds, then the conclusions (C1) and (C2) of Theorem 3.1(ii) hold.

Remark 3.5 : If (
1 +

rd1

r1

)(
1 +

rd3

r3

)(
1 +

rd2

r2

)
n1n2n3 ≤ 8, (H6)

then (H5) holds.

4. Numerical Test Results and Discussion. With the mathematical analysis
presented above, we numerically test whether oscillation can be produced following
the derived criteria. Following [15], we have extended the same parameter range
as listed in Table 1 for both M1 (and M5), finding parameter sets that satisfy
criteria (H1) (and (H5)) and test for oscillations. Among 100,000 parameter sets
each for M1 and M5 satisfying (H1) and (H5), we could not identify any parameter
set that can oscillate continuously. Unfortunately, the theorem presented in the
present work is not sufficient to identify oscillators.

It will be a challenge to prove uniqueness of limit cycles in the 3-dimensional
competitive systems. So far there is no such results in the literature. However in
[33], [11] the authors prove multiple limit cycles in some three species Lotka-Volterra
competitive models. We shall investigate uniqueness of limit cycles for the model
M1-M5 in our future project.

(1) For Model M1:

The parameters β1 = 10, β2 = 20, β3 = 35, n1 = 2, n2 = 2, n3 = 2, κ1 = 1,
κ2 = 2, κ3 = 2.5, r1 = 1, r2 = 2, r3 = 2.5 satisfy (H1) and the trajectory with
initial condition x(0) = 1, y(0) = 1, z(0) = 1 goes to equilibrium (x∗, y∗, z∗)
as t → ∞. Hence (x∗, y∗, z∗) is globally asymptotically stable (See Fig. 4.1
(a)).
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Table 1. The scanned parameter range

M1
Parameters Range Search scale
ri (degradation rates) 0.001-1000 Logarithm
βi (gene expression rates) 0.001-1000 Logarithm
κ (Threshold in all Hill function) 0.001-1000 Logarithm
n (in the Hill function) 1-8 Linear
M5
ri (basal degradation rates) 0.001-1000 Logarithm
rdi (controlled degradation rates) 0.001-1000 Logarithm
βi (gene expression rates) 0.001-1000 Logarithm
κ (Threshold in all Hill function) 0.001-1000 Logarithm
n (in the Hill function) 1-8 Linear

In Fig. 4.1 (b), the trajectory approaches a limit cycle, however the pa-
rameters β1 = 10, β2 = 20, β3 = 35, n1 = 3, n2 = 3, n3 = 3, κ1 = 1, κ2 = 2,
κ3 = 2.5, r1 = 1, r2 = 2, r3 = 2.5 does not satisfy (H1)

Fig 4.1 (a) Fig 4.1 (b)

1. For Model M2:

[] The parameters β1 = 10, β2 = 20, β3 = 25, n1 = 2, n2 = 2, n3 = 2,
κ1 = 2, κ2 = 2, κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 5, rd2 = 10, rd3 = 15
satisfy (H3) and the trajectory with initial condition x(0) = 1, y(0) = 1,
z(0) = 1 goes to equilibrium (x∗, y∗, z∗) as t → ∞. Hence (x∗, y∗, z∗) is
globally asymptotically stable (See Fig. 4.2 (a)).

In Fig. 4.2 (b), the trajectory approaches a limit cycle, however the pa-
rameters β1 = 10, β2 = 20, β3 = 25, n1 = 5, n2 = 5, n3 = 5, κ1 = 2, κ2 = 2,
κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 50, rd2 = 100, rd3 = 150 does not
satisfy (H3)

2. For Model M3:

The parameters β1 = 10, β2 = 20, β3 = 25, n1 = 2, n2 = 2, n3 = 2,
κ1 = 1, κ2 = 2, κ3 = 2.5, r1 = 5, r2 = 10, r3 = 12.5, βp = 5 satisfy (H1)
and the trajectory with initial condition x(0) = 1, y(0) = 1, z(0) = 1 goes to
equilibrium (x∗, y∗, z∗) as t→∞. Hence (x∗, y∗, z∗) is globally asymptotically
stable (See Fig. 4.3 (a)).
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Fig 4.2 (a) Fig 4.2 (b)

In Fig. 4.3 (b), the trajectory approaches a limit cycle, however the param-
eters β1 = 50, β2 = 100, β3 = 120, n1 = 5, n2 = 5, n3 = 5, κ1 = 1, κ2 = 2,
κ3 = 2.5, r1 = 5, r2 = 10, r3 = 12.5, βp = 5 does not satisfy (H1)

Fig 4.3 (a) Fig 4.3 (b)

3. For Model M4:

The parameters β1 = 10, β2 = 20, β3 = 25, n1 = 2, n2 = 2, n3 = 2, κ1 = 2,
κ2 = 2, κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 5, rd2 = 10, rd3 = 15, βp = 0.5
satisfy (H4) and the trajectory with initial condition x(0) = 1, y(0) = 1,
z(0) = 1 goes to equilibrium (x∗, y∗, z∗) as t → ∞. Hence (x∗, y∗, z∗) is
globally asymptotically stable (See Fig. 4.4 (a)).

In Fig. 4.4 (b), the trajectory approaches a limit cycle, however the pa-
rameters β1 = 10, β2 = 20, β3 = 25, n1 = 5, n2 = 5, n3 = 5, κ1 = 1, κ2 = 2,
κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 50, rd2 = 100, rd3 = 150, βp = 0.5
does not satisfy (H4)

4. For Model M5:

The parameters β1 = 10, β2 = 20, β3 = 25, n1 = 2, n2 = 2, n3 = 2, κ1 = 2,
κ2 = 2, κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 0.01, rd2 = 0.02, rd3 = 0.03
satisfy (H5) and the trajectory with initial condition x(0) = 1, y(0) = 1,
z(0) = 1 goes to equilibrium (x∗, y∗, z∗) as t → ∞. Hence (x∗, y∗, z∗) is
globally asymptotically stable (See Fig. 4.5 (a)).

In Fig. 4.5 (b), the trajectory approaches a limit cycle, however the pa-
rameters β1 = 10, β2 = 20, β3 = 25, n1 = 5, n2 = 5, n3 = 5, κ1 = 1, κ2 = 2,
κ3 = 2.5, r1 = 1, r2 = 2, r3 = 3, rd1 = 50, rd2 = 100, rd3 = 150 does not
satisfy (H5)
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Fig 4.4 (a) Fig 4.4 (b)

Fig 4.5 (a) Fig 4.5 (b)

5. Proofs. For the three-dimensional competitive systems in Models M1−M5, the
Poincaré-Bendixson Theorem holds (See Theorem A in Section 3). We shall apply
the second-compound method [20] to show that under some conditions stated in
Theorem 3.1 - Theorem 3.5 every periodic orbit, if it exists, is orbitally asymptoti-
cally stable. Since the positive equilibrium (x∗, y∗, z∗) is unique for each model of
M1−M5, then it follows that

(i) By Theorem 5.2 (See below), the equilibrium (x∗, y∗, z∗) is globally asymp-
totically stable when (x∗, y∗, z∗) is locally asymptotically stable.

(ii) When (x∗, y∗, z∗) is unstable, then (x∗, y∗, z∗) has one-dimensional stable
manifold W s(x∗, y∗, z∗). For the trajectory with

(x(0), y(0), z(0)) /∈W s(x∗, y∗, z∗),

the orbit tends to a limit cycle Γ.

Let’s recall that for a 3× 3 matrix is

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


the second compound matrix of A is

A[2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
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Let (X(t), Y (t), Z(t)) be a ω-periodic solution of three dimensional competitive
system

x′ = F (x), x ∈ R3. (5.1)

Let
A = DF (X,Y, Z), Jacobian matrix at (X,Y, Z),

and
A[2] = DF [2](X,Y, Z).

Consider the ω-periodic linear equation

dU

dt
= DF [2](X,Y, Z)U. (5.2)

From [27, Theorem 4.2] (See also [17], Theorem 3.1):

Theorem 5.1([20]) : A sufficient condition for a periodic orbit γ = {p(t) : 0 ≤
t ≤ ω} of (5.1) to be asymptotically orbitally stable with asymptotic phase is that
the linear periodic system (5.2) is asymptotically stable.

We shall introduce a function

W (X,Y, Z;U) =

3∑
i=1

pi(X,Y, Z)|Ui|

where pi(X,Y, Z) for i = 1, 2, 3 are auxiliary positive smooth functions, which will
be determined latter. Let

W (t) = W (X(t), Y (t), Z(t);U(t)).

We shall prove W (t) → 0 as t → ∞, i.e. the periodic linear system (5.2) is
asymptotically stable. Then the periodic orbit

{(X(t), Y (t), Z(t)) : 0 ≤ t ≤ ω}
is asymptotically orbitally stable.

For the sake of completeness, we include the proof of global asymptotically sta-
bility of the unique positive equilibrium Ec in [13], Prop. 3.6. Let Ω ⊆ Int(R3

+) be
a bounded positively invariant region for the three-dimensional competitive system
(5.1).

Theorem 5.2([13]) : Assume every periodic orbit of the system (5.1), if it exists, is
orbitally asymptotically stable. Let Ec be a locally asymptotically stable equilibrium
of (5.1) in Ω. Then Ec is globally asymptotically stable in Ω.

Proof. Let A be the basin of attraction of the locally asymptotically stable equi-
librium Ec. Then A is a nonempty relatively open subset of Ω. Denote ∂ΩA the
boundary of A relative to Ω. Clearly ∂ΩA is invariant. Let u ∈ ∂ΩA. Them the
omega-limit set ω(u) ⊆ ∂ΩA and Ec /∈ ω(u). Since Ec is the unique positive equi-
librium in Ω. By Poincaré-Bendixson Theorem ω(u) is a periodic orbit of (5.1),
ω(u) ⊆ ∂ΩA. From the assumption ω(u) is orbitally asymptotically stable. One
can choose a point p ∈ A sufficiently close to ω(u). On one hand, p is attracted to
Ec. On the other hand, p will be asymptotic to the orbitally stable periodic orbit
ω(u), a contradiction. Thus we prove that Ec is globally asymptotically stable in
Ω.
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Proof of Theorem 3.1 :

(i) The positive equilibrium (x∗, y∗, z∗) satisfies

x =
1

r1
β1h2(y), y =

1

r2
β2h3(z), z =

1

r3
β3h1(x).

Then

z =
1

r3
β3h1

(
1

r1
β1h2

(
1

r2
β2h3(z)

))
:= H(z),

H(0) =
β3

r3

(
β1

r1
h2

(
β2

r2
h3(0)

))
=
β3

r3

(
β1

r1
h2

(
β2

r2

))
> 0.

Obviously

H ′(z) =
1

r3
β3h
′
1

(
β1

r1
h2

(
β2

r2
h3(z)

))
· β1

r1
h′1

(
β2

r2
h3(z)

)
· β2

r2
h′3(z) < 0.

Thus z = H(z) has a unique positive solution z∗. Then y∗ = β2

r2
h3(z∗),

x∗ = β1

r1
h2(y∗). Hence the positive equilibrium (x∗, y∗, z∗) is unique.

The Jacobian evaluated at (x∗, y∗, z∗) is

J(x∗, y∗, z∗) =

 −r1 β1h
′
2(y∗) 0

0 −r2 β2h
′
3(z∗)

β3h
′
1(x∗) 0 −r3


with eigenvalues λ1, λ2, and λ3. The characteristic polynomial of J(x∗, y∗, z∗)
is

f(λ) =λ3 + λ2(r1 + r2 + r3) + λ(r1r2 + r1r3 + r2r3)+

(r1r2r3 + (−β1β2β3h
′
1(x∗)h′2(y∗)h′3(z∗))).

From Routh-Hurwitz criteria [12], page 58, (x∗, y∗, z∗) is locally asymptot-
ically stable if A1A2 > A3 where

A1 = r1 + r2 + r3, A2 = r1r2 + r1r3 + r2r3,

A3 = r1r2r3 + (−β1β2β3h
′
1(x∗)h′2(y∗)h′3(z∗)).

If A1A2 < A3, then det J = −f(0) = λ1λ2λ3 < 0. From [27] (p.51, Prop.
6.1) below, then (a) and (b) hold.

Prop. 6.1 : Suppose p = (x∗, y∗, z∗) is hyperbolic and unstable. Then the
stable manifold of p, W s(p) is one dimensional and the ω-limit set ω(q) is a
nontrivial periodic orbit in D for every q ∈ D \W s(p).

(ii) Let (X(t), Y (t), Z(t)) be a ω-periodic solution of (2.1). We denote F the
vector field of (2.1). Then the Jacobian matrix DF (X,Y, Z) is −r1 β1h

′
2(Y ) 0

0 −r2 β2h
′
3(Z)

β3h
′
1(X) 0 −r3

 . (5.3)

Then the second compound matrix DF [2](X,Y, Z) is

DF [2](X,Y, Z) =

 −r1 − r2 β2h
′
3(Z) 0

0 −r1 − r3 β1h
′
2(Y )

−β3h
′
1(X) 0 −r2 − r3

 . (5.4)
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Consider ω-periodic linear equation

dU

dt
= DF [2](X,Y, Z)U, U = (U1, U2, U3). (5.5)

Now, we introduce the function

W (X,Y, Z;U) =

3∑
i=1

pi(X,Y, Z)|Ui|

where pi(X,Y, Z), i = 1, 2, 3 will be auxiliary positive smooth functions, which
will be determined later. Let W (t) = W (X(t), Y (t), Z(t);U(t)). Then the
right hand side derivative D+W (t) of W (t) with respect to t exists and has
the form

D+W (t) =

3∑
i=1

p′i(t)|Ui(t)|+ pi(t)D+ (|Ui(t)|) (5.6)

where pi(t) = pi(X(t), Y (t), Z(t)) and p′i(t) is the derivative of pi(t). From
(5.5), we have

dU1

dt
= (−r1 − r2)U1(t) + β2h

′
3(Z(t))U2(t)

dU2

dt
= (−r1 − r3)U2(t) + β1h

′
2(Y (t))U3(t)

dU3

dt
= (−β3h

′
1(X(t)))U1(t) + (−r2 − r3)U3(t).

Since the diagonals of the matrix DF [2](X,Y, Z) are negative, it follows
that

D+(|U1(t)|) ≤ −(r1 + r2)|U1(t)|+ (−β2h
′
3(Z(t)))|U2(t)|

D+(|U2(t)|) ≤ −(r1 + r3)|U2(t)|+ (−β1h
′
2(Y (t)))|U3(t)|

D+(|U3(t)|) ≤ −(r2 + r3)|U3(t)|+ (−β3h
′
1(X(t)))|U1(t)|

(5.7)

From (5.6) and (5.7), a direct calculation yields

D+W (t) ≤
(
p′1(t)

p1(t)
− (r1 + r2) +

p3(t)

p1(t)
(−β3h

′
1(X(t)))

)
p1(t)|U1(t)|

+

(
p′2(t)

p2(t)
+
p1(t)

p2(t)
(−β2h

′
3(Z(t)))− (r1 + r3)

)
p2(t)|U2(t)|

+

(
p′3(t)

p3(t)
+
p2(t)

p3(t)
(−β1h

′
2(Y (t)))− (r2 + r3)

)
p3(t)|U3(t)|.

(5.8)

From (5.1), the periodic solution (X(t), Y (t), Z(t)) satisfies

dX

dt
= β1h2(Y )− r1X

dY

dt
= β2h3(Z)− r2Y

dZ

dt
= β3h1(X)− r3Z.

(5.9)
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From (5.9), it follows that∫ ω

0

(
β1h2(Y (t))

X(t)
− r1

)
dt = 0∫ ω

0

(
β2h3(Z(t))

Y (t)
− r2

)
dt = 0∫ ω

0

(
β3h1(X(t))

Z(t)
− r3

)
dt = 0.

(5.10)

Now, by choosing p3 = 1
p1

:= p > 0 where p = p(X,Y, Z) is a positive function

of the stable variable (X,Y, Z). We note that along the ω-periodic solution
(X(t), Y (t), Z(t)), t ∈ [0, ω], one has∫ ω

0

p′

p
dt =

∫ ω

0

p′2
p2
dt = 0.

Let

g1(t) =
p′(t)

p(t)
−
(
β1h2(Y )

X
+
β2h3(Z)

Y

)
+
p3

p1
(−β3h

′
1(X))

g2(t) =
p′2(t)

p2(t)
+

p

p2
(−β3h

′
3(Z))−

(
β1h2(Y )

X
+
β3h1(X)

Z

)
g3(t) =

p′3(t)

p3(t)
+
p2

p3
(−β1h

′
2(Y ))−

(
β2h3(Z)

Y
+
β3h1(X)

Z

)
.

Choose

p =

√√√√√ β1h2(Y )

X
+
β2h3(Z)

Y
−β3h′3(X)

.

Then
∫ ω

0
g1(t)dt = 0. Consequently, from (5.8)

D+W ≤ max (g1(t), g2(t), g3(t))W (t). (5.11)

Choose p2(t) such that

1/p

p2
≤

β1h2(Y )

X
+
β2h3(Z)

Y
−β3h′3(Z)

p2

p
≤

β2h3(Z)

Y
+
β3h1(X)

Z
−β1h′2(Y )

.

We need

(−β3h
′
3(Z))(−β1h

′
2(Y ))(

β1h2(Y )

X
+
β2h3(Z)

Y

)(
β2h3(Z)

Y
+
β3h1(X)

Z

) ≤ p2 =

β1h2(Y )

X
+
β2h3(Z)

Y
−β3h′1(X)

.

(5.12)
Then we choose p2 such that

A :=
1

p
· −β3h

′
3(Z)

β1h2(Y )

X
+
β2h3(Z)

Y

≤ p2 ≤

β2h3(Z)

Y
+
β3h1(X)

Z
−β1h′2(Y )

· p := B.
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Say p2 = 1
2 (A+B). To show that (5.12) holds, it suffices to show

(−β1h
′
2(Y ))(−β2h

′
3(Z))(−β3h

′
1(X))

≤
(
β1h2(Y )

X
+
β2h3(Z)

Y

)(
β1h2(Y )

X
+
β3h1(X)

Z

)(
β2h3(Z)

Y
+
β3h1(X)

Z

)
.

Use the inequality, for positive numbers a and b

√
ab ≤ a+ b

2
.

It suffices to show

(−β1h
′
2(Y ))(−β2h

′
3(Z))(−β3h

′
1(X))

≤8

√
β1h2(Y )β2h3(Z)

XY

√
β1h2(Y )β3h1(X)

XZ

√
β2h3(Z)β3h1(X)

Y Z

=8
β1β2β3h1(X)h2(Y )h3(Z)

XY Z
⇐⇒

β1
κn2

2 n2Y
n2−1

(κn2
2 + Y n2)

2 β3
κn1

1 n1X
n1−1(

κ12
1 +Xn1

)2 β2
κn3

3 n3Z
n3−1

(κn3
3 + Zn3)

2

≤8

β1β2β3
κn1

1

κn1
1 +Xn1

κn2
2

κn2
2 + Y n2

κn3
3

κn3
3 + Zn3

XY Z
⇐⇒

n1X
n1

κn1
1 +Xn1

· n2Y
n2

κn2
2 + Y n2

· n3Z
n3

κn3
3 + Zn3

≤ 8 (5.13)

Under (5.13) we have∫ ω

0

gi(t)dt < 0, i = 2, 3,

∫ ω

0

g1(t)dt = 0. (5.14)

From the first equation in (2.1), we obtain an upper bound for a periodic
solution X(t):

dX

dt
≤ β1h2(0)− r1X = β1 − r1X, X(t) ≤ β1

r1
.

Similarly for periodic solutions Y (t) and Z(t), we have

Y (t) ≤ β2

r2
and Z(t) ≤ β3

r3
. (5.15)

Let

n1

(
β1

r1

)n1

κn1
1 +

(
β1

r1

)n1
·

n2

(
β2

r2

)n2

κn2
2 +

(
β2

r2

)n2
·

n3

(
β3

r3

)n3

κn3
3 +

(
β3

r3

)n3
≤ 8. (H1)

Then (H1) implies (5.13). Under assumption (H1), from Theorem 5.1 and
(5.11), (5.14), every periodic orbit (X(t), Y (t), Z(t)) is orbitally asymptoti-
cally stable. From the system (2.1), we obtain differential inequalities,

dx

dt
≤ β1 − r1x,

dy

dt
≤ β2 − r2y,

dz

dt
≤ β3 − r3z.
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Thus if A1A2 > A3, applying Theorem 5.2 with

Ω =

{
(x, y, z) : 0 < x <

β1

r1
, 0 < y <

β2

r2
, 0 < z <

β3

r3

}
(5.16)

yields that (x∗, y∗, z∗) is globally asymptotically stable; if A1A2 < A3, from
Poincaré-Bendixson Theorem then (x∗, y∗, z∗) is unstable with one dimen-
sional stable manifold W s(x∗, y∗, z∗) such that the trajectory with

(x(0), y(0), z(0)) /∈W s(x∗, y∗, z∗)

approaches a limit cycle Γ.

Remark 5.2 : Upper bounds and lower bounds of a periodic solutions
X(t), Y (t), Z(t).

We may improve the upper bound in (5.15) by introducing a lower bound of
X(t), Y (t), and Z(t). Since

X(t) ≤ β1

r1
:= X(1)

max, Y (t) ≤ β2

r2
:= Y (1)

max, Z(t) ≤ β3

r3
:= Z(1)

max.

From the differential inequalities,

dX

dt
≥ β1h2

(
β2

r2

)
− r1X,

dY

dt
≥ β2h3

(
β3

r3

)
− r2Y,

dZ

dt
≥ β3h1

(
β1

r1

)
− r3Z,

We obtain lower bounds,

X(t) ≥ β1

r1
h2

(
β2

r2

)
:= X

(1)
min,

Y (t) ≥ β2

r2
h3

(
β3

r3

)
:= Y

(1)
min,

Z(t) ≥ β3

r3
h1

(
β1

r1

)
:= Z

(1)
min.

(5.17)

Using the lower bounds in (5.17), we improve the upper bounds in (5.14). From the
differential inequalities,

dX

dt
= β1h2(Y )− r1X ≤ β1h2

(
β2

r2
h3

(
β3

r3

))
− r1X,

dY

dt
= β2h3(Z)− r2Y ≤ β2h3

(
β3

r3
h1

(
β1

r1

))
− r2Y,

dZ

dt
= β3h1(X)− r3Z ≤ β3h1

(
β1

r1
h2

(
β2

r2

))
− r3Z.
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We obtain upper bounds,

X(t) ≤ β1

r1
h2

(
β2

r2
h3

(
β3

r3

))
:= X(2)

max,

Y (t) ≤ β2

r2
h3

(
β3

r3
h1

(
β1

r1

))
:= Y (2)

max,

Z(t) ≤ β3

r3
h1

(
β1

r1
h2

(
β2

r2

))
:= Z(2)

max.

From the following algorithm below, we obtain a sequence of upper bounds and
lower bounds,

X(i+1)
max =

β1

r1
h2

(
Y imin

)
,

Y (i+1)
max =

β2

r2
h3

(
Zimin

)
, i = 1, 2, . . .

Z(i+1)
max =

β3

r3
h1

(
Xi
min

)
.

X
(i)
min =

β1

r1
h2

(
Y (i)
max

)
,

Y
(i)
min =

β2

r2
h3

(
Z(i)
max

)
, i = 1, 2, . . .

Z
(i)
min =

β3

r3
h1

(
X(i)
max

)
.{

X
(i)
max

}∞
i=1

is a decreasing sequence and
{
X

(i)
min

}∞
i=1

is an increasing sequence. Sim-

ilarly,
{
Y

(i)
max

}∞
i=1

,
{
Z

(i)
max

}∞
i=1

are decreasing sequences and
{
Y

(i)
min

}∞
i=1

,
{
Z

(i)
min

}∞
i=1

are increasing sequences. We can improve the condition (H1) by

n1

(
X

(i)
max

)n1

κn1
1 +

(
X

(i)
max

)n1

n2

(
Y

(i)
max

)n2

κn2
2 +

(
Y

(i)
max

)n2

n3

(
Z

(i)
max

)n3

κn3
3 +

(
Z

(i)
max

)n3
≤ 8, i = 1, 2, . . . (Ĥ1).

Proof of Theorem 3.2 :

(i) For the Model M2, we first prove there exist a unique positive equilibrium
(x∗, y∗, z∗) of the system (2.2). The positive equilibrium (x∗, y∗, z∗) satisfies

x =
β1

r1 + rd1g2(y)
= G2(y)

y =
β2

r2 + rd2g3(z)
= G3(z)

z =
β3

r3 + rd3g1(x)
= G1(x).

The functions G1(x), G2(y), G3(z) are strictly decreasing. Then

z = G1(G2(G3(z))) = H(z),

H(0) > 0, H(z) is decreasing in z. Thus z = H(z) has a unique positive
solution z∗. Then y∗ = G3(z∗), x∗ = G2(y∗). The Jacobian of the system
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(2.2) evaluated at (x∗, y∗, z∗) is

J(x∗, y∗, z∗) =

 −(r1 + rd1g2(y∗)) −rd1g
′
2(y∗)x∗ 0

0 −(r2 + rd2g3(z∗)) −rd2g
′
3(z∗)y∗

rd3g
′
1(x∗)z∗ 0 −(r3 + rd3g1(x∗))

 .
The characteristic polynomial of J(x∗, y∗, z∗) is

f(λ) = λ3 +A1λ
2 +A2λ+A3

where A1, A2, A3 are listed in (3.2). Hence if, by Routh-Hurwitz criterion,
A1A2 > A3, then (a) holds. If A1A2 < A3, then (b) holds.

(ii) Let F be the vector field of (2.2) and (X(t), Y (t), Z(t)) be a ω-periodic solution
of the system (2.2). Then

DF (X,Y, Z) =

 −(r1 + rd1g2(Y )) −rd1g
′
2(Y )Z 0

0 −(r2 + rd2g3(Z)) −rd2g
′
3(Z)Y

rd3g
′
1(X)Z 0 −(r3 + rd3g1(X))


and

DF [2](X,Y, Z) =
− (r1 + rd1g2(Y ))
− (r2 + rd2g3(Z))

−rd2g
′
3(Z)Y 0

0
− (r1 + rd1g2(Y ))
− (r3 + rd3g1(X)) −rd1g

′
2(Y )X

rd3g
′
1(X)Z 0

− (r2 + rd2g3(Z))
− (r3 + rd3g1(X))


.

Consider ω-periodic linear equation

dU

dt
= DF [2](X,Y, Z)U, U = (U1, U2, U3). (5.18)

As in the proof of Theorem 3.1, we introduce the function

W (X,Y, Z;U) =

3∑
i=1

pi(X,Y, Z)|Ui|

and W (t) = (X(t), Y (t), Z(t);U(t)),

D+W (t) =

3∑
i=1

p′i(t)|Ui(t)|+ pi(t)D+(|Ui(t)|).

Let

D1 = (r1 + rd1g2(Y )) + (r2 + rd2g3(Z))

D2 = (r1 + rd1g2(Y )) + (r3 + rd3g1(X))

D3 = (r2 + rd2g3(Y )) + (r3 + rd3g1(X)).

Since from (5.18)

dU1

dt
= (−D1)U1 + (−rd2g

′
3(Z)Y )U2

dU2

dt
= (−D2)U2 + (−rd1g

′
2(Y )X)U3

dU3

dt
= (−D3)U3 + (−rd3g

′
1(X)Z)U1.
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Then

D+W (t) =

(
p′1
p1

+ (−D1) +
p3

p1
(rd3g

′
1(X)Z)

)
p1|U1(t)|

+

(
p′2
p2

+ (−D2) +
p1

p2
(rd2g

′
3(Z)Y )

)
p2|U2(t)|

+

(
p′3
p3

+ (−D3) +
p2

p3
(rd1g

′
2(Y )X)

)
p3|U3(t)|.

From (2.2), we have

1

X

dX

dt
=
β1

X
− (r1 + rd1g2(Y ))

1

Y

dY

dt
=
β2

Y
− (r2 + rd2g3(Z))

1

Z

dZ

dt
=
β3

Z
− (r3 + rd3g1(X)),

and ∫ ω

0

β1

X
=

∫ ω

0

(r1 + rd1g2(Y ))dt∫ ω

0

β2

Y
=

∫ ω

0

(r2 + rd2g3(Z))dt∫ ω

0

β3

Z
=

∫ ω

0

(r3 + rd3g1(X))dt∫ ω

0

D1 =

∫ ω

0

β1

X
+
β2

Y∫ ω

0

D2 =

∫ ω

0

β1

X
+
β3

Z∫ ω

0

D3 =

∫ ω

0

β2

Y
+
β3

Z
.

Choose p = p3, p1 =
1

p
such that

p2 =

β1

X
+
β2

Y
rd3g′1(X)Z

,

and (
1

p

)
p2

(rd2g
′
3(Z)Y ) ≤ β1

X
+
β3

Z

p2

p
(rd1g

′
2(Y )X) ≤ β2

Y
+
β3

Z
.

We need

rd3g
′
1(X)Z

β1

X
+
β2

Y

=
1

p2
≤

β1

X
+
β3

Z
rd2g′3(Z)Y

β2

Y
+
β3

Z
rd1g′2(Y )X
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or

rd1g
′
2(Y )X · rd2g

′
3(Z)Y · rd3g

′
1(X)Z

≤
(
β1

X
+
β2

Y

)(
β1

X
+
β3

Z

)(
β3

Z
+
β2

Y

)
.

(5.19)

It suffices to prove

rd1rd2rd3
n1κ

n1
1 Xn1−1

(κn1
1 +Xn1)2

n2κ
n2
2 Y n2−1

(κn2
2 + Y n2)2

n3κ
n3
3 Zn3−1

(κn3
3 + Zn3)2

≤ 8 · β1β2β3

X2Y 2Z2
. (5.20)

If n1 = n2 = n3 = 1 and

rd1rd2rd3
κ1κ2κ3

β1β2β3
≤ 8, (H2)

then (H2) implies (5.19) and every positive periodic solution is orbitally asymp-
totically stable.
Lemma 5.1 : For each ni > 1, i = 1, 2, 3,

max
w>0

g′i(w)w2 = max
w>0

niκ
ni
i w

ni+1

(κni
i + wni)

2 =

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
.

Proof. Let

f(w) =
wn+1

(κn + wn)
2 .

Then f(0) = 0 and lim
w→∞

f(w) = 0. Since

f ′(w) =
(κn + wn)

2
(n+ 1)wn − 2w2nn (κn + wn)

(κn + wn)
4 ,

if f ′(w) = 0 then wn =

(
n+ 1

n− 1

)
κn and

max
w>0

f(w) =

n+ 1

n− 1
κ n

√
n+ 1

n− 1

κn
(

2n

n− 1

)2 .

Hence

max
w>0

g′i(w)w2 =

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
.

Let

rd1rd2rd3

β1β2β3

3∏
i=1

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
≤ 8. (H3)
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For ni > 1, i = 1, 2, 3, then from Lemma 5.1, (H3) implies (5.20) and every
positive periodic solution is orbitally asymptotically stable. If n1 = n2 = n3 =
2, then (H3) implies

rd1rd2rd3
β1β2β3

· 3
√

3

8
κ1

3
√

3

8
κ2

3
√

3

8
κ3 ≤ 8.

From the system (2.2) we obtain differential inequalities

dx

dt
≤ β1 − r1x,

dy

dt
≤ β2 − r2y,

dz

dt
≤ β3 − r3z.

Under the assumption (H2) or (H3), similarly as in the proof of Theorem 3.1
(ii), we complete the proof of Theorem 3.2 (ii).

Proof of Theorem 3.3 :

(i) For the Model M3, from the hypothesis (M̂3) we prove there exists a unique
positive equilibrium (x∗, y∗, z∗) by solving

x = K−1(β1h2(y)) = G2(y)

where K(x) = r1x− βpg1(x) > 0, K ′(x) > 0 for x > 0, K−1 is the inverse of
K(x), and

y =
β2

r2
h3(z) = G3(z)

z =
β3

r3
h1(x) = G1(x).

The functions G1(x), G2(y), and G3(z) are strictly decreasing. We note that

G′2(y) = (K−1)′(β1h2(y))β1h
′
2(y) < 0.

Then z = G1(G2(G3(z))) = H(z), H(0) > 0, and H(z) is decreasing in
z. Thus z = H(z) has a unique positive solution z∗. Then y∗ = G3(z∗),
x∗ = G2(y∗). The Jacobian of the system (2.3) evaluated at (x∗, y∗, z∗) is

J =

 βpg
′
1(x∗)− r1 β1h

′
2(y∗) 0

0 −r2 β2h
′
3(z∗)

β3h
′
1(x∗) 0 −r3

 .
The characteristic polynomial of J(x∗, y∗, z∗) is

f(λ) = λ3 +A1λ
2 +A2λ+A3

where A1, A2, and A3 are listed in (3.3). Hence by Routh-Hurwitz criterion
if A1A2 > A3, then (a) holds. If A1A2 < A3 then (b) holds. We note that if
r1 − βpg′1(x∗) > 0, then A1, A2, A3 > 0.

(ii) Under the additional assumption (M̂3), we have

r1 − βpg′1(x) > 0.

From the system (2.3) we obtain differential inequalities

dx

dt
≤ β1 + βp − r1x,

dy

dt
≤ β2 − r2y,

dz

dt
≤ β3 − r3z.

Under the assumption (H4), similarly as in the proof of Theorem 3.1 (ii), we
complete the proof of Theorem 3.3 (ii) by replacing r1 by r1−βpg′1(x) in (5.7),
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(5.8), replacing r1X by r1X − βpg1(X) in (5.9), (5.10) and replacing
β1

r1
by

β1 + βp
r1

in (5.16).

Proof of Theorem 3.4 :

(i) For the Model M4, we prove there exists a unique positive equilibrium
(x∗, y∗, z∗) by solving

z =
β3

r3 + rd3g1(x)
= G1(x), G′1(x) < 0

y =
β2

r2 + rd2g3(z)
= G3(z), G′3(z) < 0.

Let

K(x) =
β1 + βpg1(x)

x
.

Then

K ′(x) =
xβpg

′
1(x)− (β1 + βpg1(x))

x2
,

and

K ′(x) < 0 ⇐⇒ xg′1(x)− g1(x) <
β1

βp
.

Since

xg′1(x)− g1(x) =
xn1

(κn1 + xn1)2
[xn1κ

n1 − (κn1 + xn1)]

=
xn1

(κn1 + xn1)2
ψ(x),

ψ′(x) = 0 ⇐⇒ κn1xn1−1 or x = κ
n1

n1−1 .

Then there exists x̃1, x̃2, 0 < x̃1 < x̃2 such that

ψ(x) < 0 for 0 < x < x̃1 or x > x̃2,

and

ψ(x) > 0 for x̃1 < x < x̃2.

Thus for βp > 0 small such that

max
x̃1≤x≤x̃2

(xg′1(x)− g1(x)) <
β1

βp
.

From assumption (M̂4), K ′(x) < 0 for all x > 0, We haveK(x) = r1+rd1g2(y),
and

x = K−1(r1 + rd1g2(y)) = G2(y), G′2(y) < 0 for y > 0.

Hence there exists a unique positive equilibrium (x∗, y∗, z∗). The Jacobian of
the system (2.4) evaluated at (x∗, y∗, z∗) is

J(x∗, y∗, z∗) = −(r1 + rd1g2(y∗)) + βpg
′
1(x∗) −rd1g

′
2(y∗)x∗ 0

0 −(r2 + rd2g3(z∗)) −rd2g
′
3(z∗)y∗

−rd3g
′
1(x∗)z∗ 0 −(r3 + rd3g1(x∗))

.
The characteristic polynomial of J(x∗, y∗, z∗) is

f(λ) = λ3 +A1λ
2 +A2λ+A3
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where A1, A2, A3 are listed in (3.4). As in the proof of Theorem 3.1, we
complete the proof of Theorem 3.4 (i).

(ii) Let (X(t), Y (t), Z(t)) be a ω-periodic solution of (2.4). As in the proof of
Theorem 3.1 (ii). Then

DF (X,Y, Z) = −(r1 + rd1g2(Y )) + βpg
′
1(X) −rd1g

′
2(Y )X 0

0 −(r2 + rd2g3(Z)) −rd2g
′
3(Z)Y

−rd3g
′
1(X)Z 0 −(r3 + rd3g1(X))

 ,
and

DF [2](X,Y, Z) =
− (r1 + rd1g2(Y )) + βpg

′
1(X)

− (r2 + rd2g3(Z))
−rd2g′3(Z)Y 0

0
− (r1 + rd1g2(Y )) + βpg

′
1(X)

− (r3 + rd3g1(X))
−rd1g′2(Y )X

rd3g1(X)Z 0
− (r2 + rd2g3(Z))
− (r3 + rd3g1(X))


.

As in proof of Theorem 3.2 for Model M2, we replace

D1 by (r1 + rd1g2(Y )) + (r2 + rd2g3(Z))− βpg′1(X)

D2 by (r1 + rd1g2(Y )) + (r3 + rd3g1(X))− βpg′1(X),

and keep D3 in the same

D3 = (r2 + rd2g3(Z)) + (r3 + rd3g1(X)).

From (3.4)

1

X

dX

dt
=
β1

X
+ βp

g1(X)

X
− (r1 + rd1g2(Y ))

1

Y

dY

dt
=
β2

Y
− (r2 + rd2g3(Z))

1

Z

dZ

dt
=
β3

Z
− (r3 + rd3g1(X)).

As in the proof of Theorem 3.2, we choose p3 = p, p1 = 1
p such that∫ ω

0

(−D1) +
p3

p1
rd3g

′
1(X)Z ≤ 0∫ ω

0

(−D2) +
p1

p2
rd2g

′
3(Z)Y ≤ 0∫ ω

0

(−D3) +
p2

p3
rd1g

′
2(Y )X ≤ 0.

Choose

p =

√√√√√ β1

X
+ βp

g1(X)

X
+
β2

Y
rd2g′3(Z)Y

,

and p2 such that

rd1g
′
2(Y )X

β3

Z
+
β2

Y

≤ p3

p2
≤

(
β1

X
+ βp

g1(X)

X
+
β2

Y

)
rd3g′1(X)Z

(
β1

X
+ βp

g1(X)

X
+
β3

Z

)
rd2g′3(Z)Y

.



3D COMPETITIVE SYSTEMS OF BIOLOGICAL CLOCK 3949

We need

(rd1g
′
2(Y )X)(rd2g

′
3(Z)Y )(rd3g

′
1(X)Z)

≤
(
β1

X
+ βp

g1(X)

X
+
β2

Y

)(
β1

X
+ βp

g1(X)

X
+
β3

Z

)(
β3

Z
+
β2

Y

)
.

Let

A =
β1 + βpg1(X)

X
, B =

β2

Y
, C =

β3

Z
.

Then

(rd1g
′
2(Y )X)(rd2g

′
3(Z)Y )(rd3g

′
1(X)Z)

≤(A+B)(A+ C)(B + C)

=A2C +A2B +AB2 +ABC +AC2 +BC2 +B2C +ABC.

Apply the inequality,

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 . . . an,

whenever ai > 0, i = 1, 2, · · · , n. We obtain

A2C +A2B +AB2 +ABC +AC2 +BC2 +B2C +ABC ≥ 8
8
√
A8B8C8.

It suffices to show

(rd1g
′
2(Y )X)(rd2g

′
3(Z)Y )(rd3g

′
1(X)Z) ≤ 8

(
β1β2β3

XY Z
+
βpg1(X)β2β3

XY Z

)
,

or

(rd1g
′
2(Y )Y 2)(rd2g

′
3(Z)Z2)(rd3g

′
1(X)X2) ≤ 8β2β3(β1 + βpg1(X)). (5.21)

By Lemma 5.1, it suffices to show

3∏
i=1

rdi

κi(ni + 1)(ni − 1) ni

√
ni + 1

ni − 1

4ni
≤ 8β1β2(β1 + βpg1(xlow)) (H4)

where xlow is the root of

β1 + βpg1(X) =

(
r1 + rd1g2

(
β2

r2

))
X.

We note that xlow follow by the below inequality

dX

dt
= β1 + βpg1(X)− (r1 + rd1g2(Y ))X

≥ β1 + βpg1(X)− r1X − rd1g2

(
β2

r2

)
X.

From the system (2.4) we obtain differential inequalities

dx

dt
≤ β1 + βp − r1x,

dy

dt
≤ β2 − r2y,

dz

dt
≤ β3 − r3z.

Since (H4) implies (5.21). Under the assumption (H4), similarly as in the proof

of Theorem 3.1 (ii), we complete the proof of Theorem 3.4 (ii) by replacing
β1

r1
by

β1 + βp
r1

in (5.16).
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Proof of Theorem 3.5 :

(i) For the Model M5, we prove that there exists a unique positive equilibrium
(x∗, y∗, z∗) by solving

x =
β1h2(y)

r1 + rd1g2(y)
= G2(y) ↓ in y

y =
β2h3(z)

r2 + rd2g3(z)
= G3(z) ↓ in z

z =
β3h1(x)

r3 + rd3g1(x)
= G1(x) ↓ in x.

Hence we solve z = G1(G2(G3(z))) = H(z) is a strictly decreasing function
with H(0) > 0. Hence the fixed point z∗ is unique and the positive equilibrium
(x∗, y∗, z∗) is unique. The Jacobian of the system (2.5) evaluated at (x∗, y∗, z∗)
is

J(x∗, y∗, z∗) = −(r1 + rd1g2(y∗)) β1h
′
2(y∗)− rd1g

′
2(y∗)x∗ 0

0 −(r2 + rd2g3(z∗)) β3h
′
3(z∗)− rd2g

′
3(z∗)y∗

β3h
′
1(x∗)− rd3g

′
1(x∗)z∗ 0 −(r3 + rd3g1(x∗))

 .
The characteristic polynomial of J(x∗, y∗, z∗) is

f(λ) = λ3 +A1λ
2 +A2λ+A3.

where A1, A2, and A3 are listed in (3.5). As in the proof of Theorem 3.1, we
complete the proof of Theorem 3.5 (i).

(ii) Let (X(t), Y (t), Z(t)) be a ω-periodic solution of (2.5). As in the proof of
Theorem 3.1 (ii),

DF (X,Y, Z) =

 −(r1 + rd1g2(Y )) β1h
′
2(Y )− rd1g′2(Y )X 0

0 −(r2 + rd2g3(Z)) β3h
′
3(X)− rd2g′3(Z)Y

β3h
′
1(X)− rd3g′1(X)Z 0 −(r3 + rd3g1(X))

 ,
and

DF [2](X,Y, Z) =
− (r1 + rd1g2(Y ))
− (r2 + rd2g3(Z)) β2h

′
3(Z)− rd2g

′
3(Z)Y 0

0
− (r1 + rd1g2(Y ))
− (r3 + rd3g1(X))

β1h
′
2(Y )− rd1g

′
2(Y )X

−(β3h
′
1(X)− rd3g

′
1(X)Z) 0

− (r2 + rd2g3(Z))
− (r3 + rd3g1(X))


.

As in the proof of Theorem 3.1 for Model M1, we consider

dU

dt
= DF [2](X,Y, Z)U

and introduce the function

W (X,Y, Z;U) =

3∑
i=1

pi(X,Y, Z)|Ui|.
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Let W (t) = W (X(t), Y (t), Z(t));U(t)) and compute

D+W (t) =
3∑

i=1

p
′
i(t)|Ui(t)|+ pi(t)D+(|Ui(t)|)

≤
(
p′1(t)

p1(t)
− (r1 + rd1g2(Y ) + r2 + rd2g3(Z)) +

p3(t)

p1(t)
(−β3h

′
1(X) + rd3g

′
1(X)Z)

)
p1(t)|U1(t)|

+

(
p′2(t)

p2(t)
− (r1 + rd1g2(Y ) + r3 + rd3g1(X)) +

p1(t)

p2(t)
(−β2h

′
3(Z) + rd2g

′
3(Z)Y )

)
p2(t)|U2(t)|

+

(
p′3(t)

p3(t)
− (r2 + rd2g3(Z) + r3 + rd3g1(X)) +

p2(t)

p3(t)
(−β1h

′
2(Y ) + rd1g

′
2(Y )X)

)
p3(t)|U3(t)|.

Since

1

X

dX

dt
=
β1h2(Y )

X
− (r1 + rd1g2(Y ))

1

Y

dY

dt
=
β2h3(Z)

Y
− (r2 + rd2g3(Z))

1

Z

dZ

dt
=
β3h1(X)

Z
− (r3 + rd3g1(X)),

we need

p3(t)

p1(t)
(−β3h

′
1(X) + rd3g

′
1(X)Z) ≤ β1h2(Y )

X
+
β2h3(Z)

Y

p1(t)

p2(t)
(−β2h

′
3(Z) + rd2g

′
3(Z)Y ) ≤ β1h2(Y )

X
+
β3h1(X)

Z

p2(t)

p3(t)
(−β1h

′
2(Y ) + rd1g

′
2(Y )X) ≤ β2h3(Z)

Y
+
β3h1(X)

Z
.

Choose p3 = p, p1 =
1

p
,

p =

√√√√√ β1h2(Y )

X
+
β2h3(Z)

Y
−β3h′1(X) + rd3g′1(X)Z

.

We need

−β1h
′
2(Y ) + rd1g

′
2(Y )X

β2h3(Z)

Y
+
β3h1(X)

Z

≤ p3

p2
≤

β1h2(Y )

X
+
β2h3(Z)

Y
−β3h′1(X) + rd3g′1(X)Z

·

β1h2(Y )

X
+
β3h1(X)

Z
−β2h′3(Z) + rd2g′3(Z)Y

.

or

(−β1h
′
2(Y ) + rd1g

′
2(Y )X)(−β3h

′
1(X) + rd3g

′
1(X)Z)(−β2h

′
3(Z) + rd2g

′
3(Z)Y )

≤
(
β2h3(Z)

Y
+
β3h1(X)

Z

)(
β1h2(Y )

X
+
β2h3(Z)

Y

)(
β1h2(Y )

X
+
β3h1(X)

Z

)
.

It suffices to show

(−β1h
′
2(Y ) + rd1g

′
2(Y )X)(−β3h

′
1(X) + rd3g

′
1(X)Z)(−β2h

′
3(Z) + rd2g

′
3(Z)Y )

≤8
β1β2β3h1(X)h2(Y )h3(Z)

XY Z
.

(5.22)
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Let

hi(w) =
κni
i

κni
i + wni

, hi(0) = 1,

h′i(w) =
−κni

i niw
ni−1

(κni
i + wni)2

,

gi(w) =
wni

κni
i + wni

,

g′i(w) =
κni
i niw

ni−1

(κni
i + wni)2

,

(5.23)

for i = 1, 2, 3. Substituting (5.23) into (5.22) yields

8β1β2β3κ
n1
1 κn2

2 κn3
3 ≥

(
β1
κn2

2 n2Y
n2

κn2
2 + Y n2

+
rd1κ

n2
2 n2Y

n2

κn2
2 + Y n2

X

)
·
(
β3
κn1

1 n1X
n1

κn1
1 +Xn1

+
rd3κ

n1
1 n1X

n1

κn1
1 +Xn1

Z

)
·
(
β2
κn3

3 n3Z
n3

κn3
3 + Zn3

+
rd2κ

n3
3 n3Z

n3

κn3
3 + Zn3

Y

) (5.24)

Since
dX

dt
= β1h2(Y )− (r1 + rd1g2(Y ))X

≤ β1h2(0)− (r1 + rd1 · 0)X

= β1 − r1X.

Hence X(t) ≤ β1

r1
. Similarly Y (t) ≤ β2

r2
and Z(t) ≤ β3

r3
. Let

8β1β2β3 ≥
(
n2g2

(
β2

r2

))(
β1 + rd1

β1

r1

)
·
(
n1g1

(
β1

r1

))(
β3 + rd3

β3

r3

)
·
(
n3g3

(
β3

r3

))(
β2 + rd2

β2

r2

) (H5)

be (H5). Then (H5) implies (5.24). Let

8 ≥
(

1 +
rd1

r1

)
n2 ·

(
1 +

rd3

r3

)
n1 ·

(
1 +

rd2

r2

)
n3. (H6)

Then (H6) implies (H5). From the system (2.5) we obtain differential inequal-
ities

dx

dt
≤ β1 − r1x,

dy

dt
≤ β2 − r2y,

dz

dt
≤ β3 − r3z.

Under the assumption (H5), similarly as in the proof of Theorem 3.1 (ii), we
complete the proof of Theorem 3.5 (ii).
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